A three-dimensional cloud-scale model has been designed.The governing equations of the model are composed of two groups of equations:one group includes compressible motion equations,continuity equation, pressure equat...A three-dimensional cloud-scale model has been designed.The governing equations of the model are composed of two groups of equations:one group includes compressible motion equations,continuity equation, pressure equation and thermodynamic equation,which are of Eulerian type,and the other consists of cloud- precipitation microphysics equations which are of Lagrangian type.Since the degree of influence of sound wave on the air motion is quite different from that on the temperature or hydrometeors,the time splitting procedure is used in solving governing equations.Both unstaggered and staggered meshes have been utilized.Integra- tion schemes adopted are the Eulerian backward difference method for the unstaggered mesh and semi-implicit method for staggered mesh.Several experiments of modelling have been conducted and a reasonable three- dimensional image of deep convection is obtained.With this model the horizontal and vertical vortex circula- tions are simulated.Furthermore,the effects of horizontal vortex on the formation and development of downdraft within cloud have also been studied.展开更多
Big data is an emerging term in the storage indus- try, and it is data analytics on big storage, i.e., Cloud-scale storage. In Cloud-scale (or EB-scale) file systems, load bal- ancing in request workloads across a m...Big data is an emerging term in the storage indus- try, and it is data analytics on big storage, i.e., Cloud-scale storage. In Cloud-scale (or EB-scale) file systems, load bal- ancing in request workloads across a metadata server cluster is critical for avoiding performance bottlenecks and improv- ing quality of services. Many good approaches have been pro- posed for load balancing in distributed file systems. Some of them pay attention to global namespace balancing, making metadata distribution across metadata servers as uniform as possible. However, they do not work well in skew request dis- tributions, which impair load balancing but simultaneously increase the effectiveness of caching and replication, in this paper, we propose Cloud Cache (C2), an adaptive and scal- able load balancing scheme for metadata server cluster in EB-scale file systems. It combines adaptive cache diffusion and replication scheme to cope with the request load balanc- ing problem, and it can be integrated into existing distributed metadata management approaches to efficiently improve their load balancing performance. C2 runs as follows: 1) to run adaptive cache diffusion first, if a node is overloaded, load- shedding will be used; otherwise, load-stealing will be used; and 2) to run adaptive replication scheme second, if there is a very popular metadata item (or at least two items) causing a node be overloaded, adaptive replication scheme will be used,in which the very popular item is not split into several nodes using adaptive cache diffusion because of its knapsack prop- erty. By conducting performance evaluation in trace-driven simulations, experimental results demonstrate the efficiency and scalability of C2.展开更多
目前,基于深度学习的点云上采样方法缺失对局部区域特征关联性的关注和对全局特征的多尺度提取,导致输出的密集点云存在异常值过多、细粒度不高等问题。为解决上述问题,提出了嵌入注意力机制的并行多尺度点云上采样网络(Parallel Multi-...目前,基于深度学习的点云上采样方法缺失对局部区域特征关联性的关注和对全局特征的多尺度提取,导致输出的密集点云存在异常值过多、细粒度不高等问题。为解决上述问题,提出了嵌入注意力机制的并行多尺度点云上采样网络(Parallel Multi-scale with Attention mechanism for Point cloud Upsampling),网络由特征提取器、特征拓展器、坐标细化器和坐标重建器4个模块级联组成。首先给定一个N×3的稀疏点云作为输入,为了获得点云的全局和局部特征信息,设计了一个嵌入注意力机制的并行多尺度特征提取模块(PMA)用于将三维空间的点云映射到高维特征空间。其次使用边缘卷积特征拓展器拓展点云特征维度,得到高维点云特征,以更好地保留点云特征的边缘信息,将高维点云特征通过坐标重建器转换回三维空间中。最后使用坐标细化器精细调整输出点云细节。在合成数据集PU1K上的对比实验结果表明,PMA-PU生成的密集点云在倒角距离(CD)、豪斯多夫距离(HD)和点面距离(P2F)上都有显著提升,分别比性能次优的网络模型优化了7.863%,21.631%,14.686%。可视化结果证明了PMA-PU具有性能更好的特征提取器,能够生成细粒度更高、形状更接近真实值的密集点云。展开更多
文摘A three-dimensional cloud-scale model has been designed.The governing equations of the model are composed of two groups of equations:one group includes compressible motion equations,continuity equation, pressure equation and thermodynamic equation,which are of Eulerian type,and the other consists of cloud- precipitation microphysics equations which are of Lagrangian type.Since the degree of influence of sound wave on the air motion is quite different from that on the temperature or hydrometeors,the time splitting procedure is used in solving governing equations.Both unstaggered and staggered meshes have been utilized.Integra- tion schemes adopted are the Eulerian backward difference method for the unstaggered mesh and semi-implicit method for staggered mesh.Several experiments of modelling have been conducted and a reasonable three- dimensional image of deep convection is obtained.With this model the horizontal and vertical vortex circula- tions are simulated.Furthermore,the effects of horizontal vortex on the formation and development of downdraft within cloud have also been studied.
文摘Big data is an emerging term in the storage indus- try, and it is data analytics on big storage, i.e., Cloud-scale storage. In Cloud-scale (or EB-scale) file systems, load bal- ancing in request workloads across a metadata server cluster is critical for avoiding performance bottlenecks and improv- ing quality of services. Many good approaches have been pro- posed for load balancing in distributed file systems. Some of them pay attention to global namespace balancing, making metadata distribution across metadata servers as uniform as possible. However, they do not work well in skew request dis- tributions, which impair load balancing but simultaneously increase the effectiveness of caching and replication, in this paper, we propose Cloud Cache (C2), an adaptive and scal- able load balancing scheme for metadata server cluster in EB-scale file systems. It combines adaptive cache diffusion and replication scheme to cope with the request load balanc- ing problem, and it can be integrated into existing distributed metadata management approaches to efficiently improve their load balancing performance. C2 runs as follows: 1) to run adaptive cache diffusion first, if a node is overloaded, load- shedding will be used; otherwise, load-stealing will be used; and 2) to run adaptive replication scheme second, if there is a very popular metadata item (or at least two items) causing a node be overloaded, adaptive replication scheme will be used,in which the very popular item is not split into several nodes using adaptive cache diffusion because of its knapsack prop- erty. By conducting performance evaluation in trace-driven simulations, experimental results demonstrate the efficiency and scalability of C2.
文摘目前,基于深度学习的点云上采样方法缺失对局部区域特征关联性的关注和对全局特征的多尺度提取,导致输出的密集点云存在异常值过多、细粒度不高等问题。为解决上述问题,提出了嵌入注意力机制的并行多尺度点云上采样网络(Parallel Multi-scale with Attention mechanism for Point cloud Upsampling),网络由特征提取器、特征拓展器、坐标细化器和坐标重建器4个模块级联组成。首先给定一个N×3的稀疏点云作为输入,为了获得点云的全局和局部特征信息,设计了一个嵌入注意力机制的并行多尺度特征提取模块(PMA)用于将三维空间的点云映射到高维特征空间。其次使用边缘卷积特征拓展器拓展点云特征维度,得到高维点云特征,以更好地保留点云特征的边缘信息,将高维点云特征通过坐标重建器转换回三维空间中。最后使用坐标细化器精细调整输出点云细节。在合成数据集PU1K上的对比实验结果表明,PMA-PU生成的密集点云在倒角距离(CD)、豪斯多夫距离(HD)和点面距离(P2F)上都有显著提升,分别比性能次优的网络模型优化了7.863%,21.631%,14.686%。可视化结果证明了PMA-PU具有性能更好的特征提取器,能够生成细粒度更高、形状更接近真实值的密集点云。