Theoretical investigation of the phase equilibria of the Fe-Ni alloy has been performed by combining the FLAPW total energy calculations and the Cluster Variation Method through the Cluster Expansion Method. The calcu...Theoretical investigation of the phase equilibria of the Fe-Ni alloy has been performed by combining the FLAPW total energy calculations and the Cluster Variation Method through the Cluster Expansion Method. The calculations have proved the stabilization of the LIE phase at 1:3 stoichiometry, which is in agreement with the experimental result, and predicted the existence of L1 0 as a stable phase below 550 K; this L1 0 phase has been missing in the conventional phase diagram. The calculations are extended to the Fe-rich region that is characterized by a wide range phase separation and has drawn considerable attention because of the intriguing Invar property associated with a Fe concentration of 65%. To reveal the origin of the phase separation, a P-V curve in an entire concentration range is derived by the second derivative of free energy functional of the disordered phase with respect to the volume. The calculation confirmed that the phase separation is caused by the breakdown of the mechanical-stability criterion. The newly calculated phase separation line combined with the L1 0 and L12Eorder-disordered phase boundaries provides phase equilibria in the wider concentration range of the system. Furthermore, a coefficient of thermal expansion (CTE) is attempted by incorporating the thermal vibration effect through harmonic approximation of the Debye-Gruneisen model. The Invar behavior has been reproduced, and the origin of this anomalous volume change has been discussed.展开更多
Based on cluster variation method (CVM) and natural iteration method (MM),order-disorder phase transition in the intercalation compounds M_(1/2)TiS_2 is simulated bycomputer. The favorable conditions, under which 3^(1...Based on cluster variation method (CVM) and natural iteration method (MM),order-disorder phase transition in the intercalation compounds M_(1/2)TiS_2 is simulated bycomputer. The favorable conditions, under which 3^(1/2)a_0 x a_0 superstructure is formed, aregiven, and the results are in good agreement with the experiments and theoretical calculations. Therelationship between critical temperature and M-ion-vacancy interaction parameter is linear.展开更多
文摘Theoretical investigation of the phase equilibria of the Fe-Ni alloy has been performed by combining the FLAPW total energy calculations and the Cluster Variation Method through the Cluster Expansion Method. The calculations have proved the stabilization of the LIE phase at 1:3 stoichiometry, which is in agreement with the experimental result, and predicted the existence of L1 0 as a stable phase below 550 K; this L1 0 phase has been missing in the conventional phase diagram. The calculations are extended to the Fe-rich region that is characterized by a wide range phase separation and has drawn considerable attention because of the intriguing Invar property associated with a Fe concentration of 65%. To reveal the origin of the phase separation, a P-V curve in an entire concentration range is derived by the second derivative of free energy functional of the disordered phase with respect to the volume. The calculation confirmed that the phase separation is caused by the breakdown of the mechanical-stability criterion. The newly calculated phase separation line combined with the L1 0 and L12Eorder-disordered phase boundaries provides phase equilibria in the wider concentration range of the system. Furthermore, a coefficient of thermal expansion (CTE) is attempted by incorporating the thermal vibration effect through harmonic approximation of the Debye-Gruneisen model. The Invar behavior has been reproduced, and the origin of this anomalous volume change has been discussed.
基金This work was supported by the Foundation of Civil Aviation University of China (No. 2001-3-18).
文摘Based on cluster variation method (CVM) and natural iteration method (MM),order-disorder phase transition in the intercalation compounds M_(1/2)TiS_2 is simulated bycomputer. The favorable conditions, under which 3^(1/2)a_0 x a_0 superstructure is formed, aregiven, and the results are in good agreement with the experiments and theoretical calculations. Therelationship between critical temperature and M-ion-vacancy interaction parameter is linear.