Task scheduling in highly elastic and dynamic processing environments such as cloud computing have become the most discussed problem among researchers.Task scheduling algorithms are responsible for the allocation of t...Task scheduling in highly elastic and dynamic processing environments such as cloud computing have become the most discussed problem among researchers.Task scheduling algorithms are responsible for the allocation of the tasks among the computing resources for their execution,and an inefficient task scheduling algorithm results in under-or over-utilization of the resources,which in turn leads to degradation of the services.Therefore,in the proposed work,load balancing is considered as an important criterion for task scheduling in a cloud computing environment as it can help in reducing the overhead in the critical decision-oriented process.In this paper,we propose an adaptive genetic algorithm-based load balancing(GALB)-aware task scheduling technique that not only results in better utilization of resources but also helps in optimizing the values of key performance indicators such as makespan,performance improvement ratio,and degree of imbalance.The concept of adaptive crossover and mutation is used in this work which results in better adaptation for the fittest individual of the current generation and prevents them from the elimination.CloudSim simulator has been used to carry out the simulations and obtained results establish that the proposed GALB algorithm performs better for all the key indicators and outperforms its peers which are taken into the consideration.展开更多
Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of th...Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of the network results in packet loss and Delay(DL).For optimal performance,it is important to load balance between different gateways.As a result,a stable load balancing procedure is implemented,which selects gateways based on Fuzzy Logic(FL)and increases the efficiency of the network.In this case,since gate-ways are selected based on the number of nodes,the Energy Consumption(EC)was high.This paper presents a novel Node Quality-based Clustering Algo-rithm(NQCA)based on Fuzzy-Genetic for Cluster Head and Gateway Selection(FGCHGS).This algorithm combines NQCA with the Improved Weighted Clus-tering Algorithm(IWCA).The NQCA algorithm divides the network into clusters based upon node priority,transmission range,and neighbourfidelity.In addition,the simulation results tend to evaluate the performance effectiveness of the FFFCHGS algorithm in terms of EC,packet loss rate(PLR),etc.展开更多
To efficiently complete a complex computation task,the complex task should be decomposed into subcomputation tasks that run parallel in edge computing.Wireless Sensor Network(WSN)is a typical application of parallel c...To efficiently complete a complex computation task,the complex task should be decomposed into subcomputation tasks that run parallel in edge computing.Wireless Sensor Network(WSN)is a typical application of parallel computation.To achieve highly reliable parallel computation for wireless sensor network,the network's lifetime needs to be extended.Therefore,a proper task allocation strategy is needed to reduce the energy consumption and balance the load of the network.This paper proposes a task model and a cluster-based WSN model in edge computing.In our model,different tasks require different types of resources and different sensors provide different types of resources,so our model is heterogeneous,which makes the model more practical.Then we propose a task allocation algorithm that combines the Genetic Algorithm(GA)and the Ant Colony Optimization(ACO)algorithm.The algorithm concentrates on energy conservation and load balancing so that the lifetime of the network can be extended.The experimental result shows the algorithm's effectiveness and advantages in energy conservation and load balancing.展开更多
文摘Task scheduling in highly elastic and dynamic processing environments such as cloud computing have become the most discussed problem among researchers.Task scheduling algorithms are responsible for the allocation of the tasks among the computing resources for their execution,and an inefficient task scheduling algorithm results in under-or over-utilization of the resources,which in turn leads to degradation of the services.Therefore,in the proposed work,load balancing is considered as an important criterion for task scheduling in a cloud computing environment as it can help in reducing the overhead in the critical decision-oriented process.In this paper,we propose an adaptive genetic algorithm-based load balancing(GALB)-aware task scheduling technique that not only results in better utilization of resources but also helps in optimizing the values of key performance indicators such as makespan,performance improvement ratio,and degree of imbalance.The concept of adaptive crossover and mutation is used in this work which results in better adaptation for the fittest individual of the current generation and prevents them from the elimination.CloudSim simulator has been used to carry out the simulations and obtained results establish that the proposed GALB algorithm performs better for all the key indicators and outperforms its peers which are taken into the consideration.
文摘Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of the network results in packet loss and Delay(DL).For optimal performance,it is important to load balance between different gateways.As a result,a stable load balancing procedure is implemented,which selects gateways based on Fuzzy Logic(FL)and increases the efficiency of the network.In this case,since gate-ways are selected based on the number of nodes,the Energy Consumption(EC)was high.This paper presents a novel Node Quality-based Clustering Algo-rithm(NQCA)based on Fuzzy-Genetic for Cluster Head and Gateway Selection(FGCHGS).This algorithm combines NQCA with the Improved Weighted Clus-tering Algorithm(IWCA).The NQCA algorithm divides the network into clusters based upon node priority,transmission range,and neighbourfidelity.In addition,the simulation results tend to evaluate the performance effectiveness of the FFFCHGS algorithm in terms of EC,packet loss rate(PLR),etc.
基金supported by Postdoctoral Science Foundation of China(No.2021M702441)National Natural Science Foundation of China(No.61871283)。
文摘To efficiently complete a complex computation task,the complex task should be decomposed into subcomputation tasks that run parallel in edge computing.Wireless Sensor Network(WSN)is a typical application of parallel computation.To achieve highly reliable parallel computation for wireless sensor network,the network's lifetime needs to be extended.Therefore,a proper task allocation strategy is needed to reduce the energy consumption and balance the load of the network.This paper proposes a task model and a cluster-based WSN model in edge computing.In our model,different tasks require different types of resources and different sensors provide different types of resources,so our model is heterogeneous,which makes the model more practical.Then we propose a task allocation algorithm that combines the Genetic Algorithm(GA)and the Ant Colony Optimization(ACO)algorithm.The algorithm concentrates on energy conservation and load balancing so that the lifetime of the network can be extended.The experimental result shows the algorithm's effectiveness and advantages in energy conservation and load balancing.