期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Why are halo coronal mass ejections faster? 被引量:3
1
作者 Qing-Min Zhang Yang Guo +2 位作者 Peng-Fei Chen Ming-De Ding Cheng Fang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2010年第5期461-472,共12页
Halo coronal mass ejections (CMEs) have been to be significantly faster than normal CMEs, which is a long-standing puzzle. In order to solve the puzzle, we first investigate the observed properties of 31 limb CMEs t... Halo coronal mass ejections (CMEs) have been to be significantly faster than normal CMEs, which is a long-standing puzzle. In order to solve the puzzle, we first investigate the observed properties of 31 limb CMEs that clearly display loopshaped frontal loops. The observational results show a strong tendency that slower CMEs are weaker in white-light intensity. Then, we perform a Monte Carlo simulation of 20000 artificial limb CMEs that have an average velocity of ~523km s -1. The Thomson scattering of these events is calculated when they are assumed to be observed as limb and halo events, respectively. It is found that the white-light inten-sity of many slow CMEs becomes remarkably reduced when they turn from being viewed as a limb event to being viewed as a halo event. When the intensity is below the background solar wind fluctuation, it is assumed that they would be missed by coronagraphs. The average velocity of "detectable" halo CMEs is ~922km s -1, very close to the observed value. This also indicates that wider events are more likely to be recorded. The results soundly suggest that the higher average velocity of halo CMEs is due to that a majority of slow events and some of narrow fast events carrying less material are so faint that they are blended with the solar wind fluctuations, and therefore are not observed. 展开更多
关键词 Sun: coronal mass ejections cmes Sun: activity methods: nu-merical solar-terrestrial relations
下载PDF
Periodicity in the most violent solar eruptions: recent observations of coronal mass ejections and flares revisited
2
作者 Peng-Xin Gao Jing-Lan Xie Hong-Fei Liang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2012年第3期322-330,共9页
Using the Hilbert-Huang Transform method, we investigate the periodic- ity in the monthly occurrence numbers and monthly mean energy of coronal mass ejections (CMEs) observed by the Large Angle and Spectrometric Cor... Using the Hilbert-Huang Transform method, we investigate the periodic- ity in the monthly occurrence numbers and monthly mean energy of coronal mass ejections (CMEs) observed by the Large Angle and Spectrometric Coronagraph Experiment on board the Solar and Heliographic Observatory from 1999 March to 2009 December. We also investigate the periodicity in the monthly occurrence numbers of Hα flares and monthly mean flare indices from 1996 January to 2008 December. The results show the following. (1) The period of 5.66 yr is found to be statistically significant in the monthly occurrence numbers of CMEs; the period of 10.5 yr is found to be statistically significant in the monthly mean energy of CMEs. (2) The periods of 3.05 and 8.70 yr are found to be statistically significant in the monthly occurrence numbers of Hα flares; the period of 9.14 yr is found to be statistically significant in the monthly mean flare indices. 展开更多
关键词 methods: data analysis—Sun: activity—Sun: coronal mass ejections cmes)—Sun: flares
下载PDF
Origin and structures of solar eruptions Ⅱ: Magnetic modeling 被引量:10
3
作者 GUO Yang CHENG Xin DING MingDe 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第8期1408-1439,共32页
The topology and dynamics of the three-dimensional magnetic field in the solar atmosphere govern various solar eruptive phenomena and activities, such as flares, coronal mass ejections, and filaments/prominences. We h... The topology and dynamics of the three-dimensional magnetic field in the solar atmosphere govern various solar eruptive phenomena and activities, such as flares, coronal mass ejections, and filaments/prominences. We have to observe and model the vector magnetic field to understand the structures and physical mechanisms of these solar activities. Vector magnetic fields on the photosphere are routinely observed via the polarized light, and inferred with the inversion of Stokes profiles. To analyze these vector magnetic fields, we need first to remove the 180° ambiguity of the transverse components and correct the projection effect. Then, the vector magnetic field can be served as the boundary conditions for a force-free field modeling after a proper preprocessing. The photospheric velocity field can also be derived from a time sequence of vector magnetic fields.Three-dimensional magnetic field could be derived and studied with theoretical force-free field models, numerical nonlinear force-free field models, magnetohydrostatic models, and magnetohydrodynamic models. Magnetic energy can be computed with three-dimensional magnetic field models or a time series of vector magnetic field. The magnetic topology is analyzed by pinpointing the positions of magnetic null points, bald patches, and quasi-separatrix layers. As a well conserved physical quantity,magnetic helicity can be computed with various methods, such as the finite volume method, discrete flux tube method, and helicity flux integration method. This quantity serves as a promising parameter characterizing the activity level of solar active regions. 展开更多
关键词 Solar activity Solar corona Coronal Mass Ejections(cmes Solar flares Magnetic fields Solar photosphere
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部