High winds cause waves, storm surge, erosion and physical damage to infrastructure and ecosystems. However, there have been few evaluations of wind climatologies and future changes, especially change in high-wind even...High winds cause waves, storm surge, erosion and physical damage to infrastructure and ecosystems. However, there have been few evaluations of wind climatologies and future changes, especially change in high-wind events, on a regional basis. This study uses Alaska as a regional case study of climatological wind speed and direction. Eleven first-order stations across different subregions of Alaska provide historical data (1975-2005) for the observational climatology and for the calibration of Coupled Model Inter comparison Project (CMIP5) simulations, which in turn provide projections of changes in winds through 2100. Historically, winds exceeding 25 and 35 knots are most common in the Bering Sea coastal region of Alaska, followed by northern Alaska coastal areas. Autumn and winter are the seasons of most frequent high-wind occurrences in the coastal sites, while there is no distinct seasonal peak at the interior stations where high-wind events are less frequent. An examination of the sea level pressure pattern associated with the highest-wind event at each station reveals the presence of a strong pressure gradient associated with an extratropical cyclone in most cases. Northern coastal regions of Alaska are projected to experience increased frequencies of high-wind events during the cold season, especially late autumn and early winter, when reduced sea ice cover in the late century will leave coastal regions increasingly vulnerable to flooding and erosion.展开更多
文摘High winds cause waves, storm surge, erosion and physical damage to infrastructure and ecosystems. However, there have been few evaluations of wind climatologies and future changes, especially change in high-wind events, on a regional basis. This study uses Alaska as a regional case study of climatological wind speed and direction. Eleven first-order stations across different subregions of Alaska provide historical data (1975-2005) for the observational climatology and for the calibration of Coupled Model Inter comparison Project (CMIP5) simulations, which in turn provide projections of changes in winds through 2100. Historically, winds exceeding 25 and 35 knots are most common in the Bering Sea coastal region of Alaska, followed by northern Alaska coastal areas. Autumn and winter are the seasons of most frequent high-wind occurrences in the coastal sites, while there is no distinct seasonal peak at the interior stations where high-wind events are less frequent. An examination of the sea level pressure pattern associated with the highest-wind event at each station reveals the presence of a strong pressure gradient associated with an extratropical cyclone in most cases. Northern coastal regions of Alaska are projected to experience increased frequencies of high-wind events during the cold season, especially late autumn and early winter, when reduced sea ice cover in the late century will leave coastal regions increasingly vulnerable to flooding and erosion.