期刊文献+
共找到141篇文章
< 1 2 8 >
每页显示 20 50 100
Sea level rise projection in the South China Sea from CMIP5 models 被引量:5
1
作者 HUANG Chuanjiang QIAO Fangli 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第3期31-41,共11页
Future potential sea level change in the South China Sea (SCS) is estimated by using 24 CMIP5 models under different representative concentration pathway (RCP) scenarios. By the end of the 21st century (2081–210... Future potential sea level change in the South China Sea (SCS) is estimated by using 24 CMIP5 models under different representative concentration pathway (RCP) scenarios. By the end of the 21st century (2081–2100 relative to 1986–2005), the multimodel ensemble mean dynamic sea level (DSL) is projected to rise 0.9, 1.6, and 1.1 cm under RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively, resulting in a total sea level rise (SLR) of 40.9, 48.6, and 64.1 cm in the SCS. It indicates that the SCS will experience a substantial SLR over the 21st century, and the rise is only marginal larger than the global mean SLR. During the same period, the steric sea level (SSL) rise is estimated to be 6.7, 10.0, and 15.3 cm under the three scenarios, respectively, which accounts only for 16%, 21% and 24% of the total SLR in this region. The changes of the SSL in the SCS are almost out of phase with those of the DSL for the three scenarios. The central deep basin has a slightly weak DSL rise, but a strong SSL rise during the 21st century, compared with the north and southwest shelves. 展开更多
关键词 sea level rise South China Sea dynamic sea level steric sea level cmip5 models
下载PDF
Precipitation-Surface Temperature Relationship in the IPCC CMIP5 Models 被引量:6
2
作者 吴仁广 陈洁鹏 温之平 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第3期766-778,共13页
Precipitation and surface temperature are two important quantities whose variations are closely related through various physical processes. In the present study, we evaluated the precipitation-surface temperature (P-... Precipitation and surface temperature are two important quantities whose variations are closely related through various physical processes. In the present study, we evaluated the precipitation-surface temperature (P-T) relationship in 17 climate models involved in the Coupled Model Intercomparison Project Phase 5 (CMIP5) for the IPCC Assessment Report version 5. Most models performed reasonably well at simulat- ing the large-scale features of the P-T correlation distribution. Based on the pattern correlation of the P-T correlation distribution, the models performed better in November-December-January-February-March (NDJFM) than in May-June-July-August-September (MJJAS) except for the mid-latitudes of the North- ern Hemisphere, and the performance was generally better over the land than over the ocean. Seasonal dependence was more obvious over the land than over the ocean and was more obvious over the mid- and high-latitudes than over the tropics. All of the models appear to have had difficulty capturing the P-T correlation distribution over the mid-latitudes of the Southern Hemisphere in MJJAS. The spatial variabil- ity of the P-T correlation in the models was overestimated compared to observations. This overestimation tended to be larger over the land than over the ocean and larger over the mid- and high-latitudes than over the tropics. Based on analyses of selected model ensemble simulations, the spread of the P-T correlation among the ensemble members appears to have been small. While the performance in the P-T correlation provides a general direction for future improvement of climate models, the specific reasons for the discrep- ancies between models and observations remain to be revealed with detailed and comprehensive evaluations in various aspects. 展开更多
关键词 precipitation-surface temperature relationship cmip5 models seasonal dependence
下载PDF
Future Precipitation Extremes in China under Climate Change and Their Physical Quantification Based on a Regional Climate Model and CMIP5 Model Simulations 被引量:5
3
作者 Peihua QIN Zhenghui XIE +2 位作者 Jing ZOU Shuang LIU Si CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第3期460-479,共20页
The atmospheric water holding capacity will increase with temperature according to Clausius-Clapeyron scaling and affects precipitation.The rates of change in future precipitation extremes are quantified with changes ... The atmospheric water holding capacity will increase with temperature according to Clausius-Clapeyron scaling and affects precipitation.The rates of change in future precipitation extremes are quantified with changes in surface air temperature.Precipitation extremes in China are determined for the 21st century in six simulations using a regional climate model,RegCM4,and 17 global climate models that participated in CMIP5.First,we assess the performance of the CMIP5 models and RCM runs in their simulation of extreme precipitation for the current period(RF:1982-2001).The CMIP5 models and RCM results can capture the spatial variations of precipitation extremes,as well as those based on observations:OBS and XPP.Precipitation extremes over four subregions in China are predicted to increase in the mid-future(MF:2039-58)and far-future(FF:2079-98)relative to those for the RF period based on both the CMIP5 ensemble mean and RCM ensemble mean.The secular trends in the extremes of the CMIP5 models are predicted to increase from 2008 to 2058,and the RCM results show higher interannual variability relative to that of the CMIP5 models.Then,we quantify the increasing rates of change in precipitation extremes in the MF and FF periods in the subregions of China with the changes in surface air temperature.Finally,based on the water vapor equation,changes in precipitation extremes in China for the MF and FF periods are found to correlate positively with changes in the atmospheric vertical wind multiplied by changes in surface specific humidity(significant at the p<0.1 level). 展开更多
关键词 precipitation extremes regional climate model cmip5 models
下载PDF
Relationship between South China Sea Precipitation Variability and Tropical Indo-Pacific SST Anomalies in IPCC CMIP5 Models during Spring-to-Summer Transition 被引量:1
4
作者 HU Wenting WU Renguang 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第9期1303-1318,共16页
The present study evaluates the precipitation variability over the South China Sea(SCS) and its relationship to tropical Indo-Pacific SST anomalies during spring-to-summer transition(April–May–June,AMJ) simulate... The present study evaluates the precipitation variability over the South China Sea(SCS) and its relationship to tropical Indo-Pacific SST anomalies during spring-to-summer transition(April–May–June,AMJ) simulated by 23 Intergovernmental Panel on Climate Change Coupled Model Intercomparison Project Phase 5 coupled models.Most of the models have the capacity to capture the AMJ precipitation variability in the SCS.The precipitation and SST anomaly(SSTA) distribution in the SCS,tropical Pacific Ocean(TPO),and tropical Indian Ocean(TIO) domains is evaluated based on the pattern correlation coefficients between model simulations and observations.The analysis leads to several points of note.First,the performance of the SCS precipitation anomaly pattern in AMJ is model dependent.Second,the SSTA pattern in the TPO and TIO is important for capturing the AMJ SCS precipitation variability.Third,a realistic simulation of the western equatorial Pacific(WEP) and local SST impacts is necessary for reproducing the AMJ SCS precipitation variability in some models.Fourth,the overly strong WEP SST impacts may disrupt the relationship between the SCS precipitation and the TPO–TIO SST.Further work remains to be conducted to unravel the specific reasons for the discrepancies between models and observations in various aspects. 展开更多
关键词 atmosphere–ocean interaction South China Sea cmip5 models spring-to-summer transition
下载PDF
Assessment of Indices of Temperature Extremes Simulated by Multiple CMIP5 Models over China 被引量:16
5
作者 DONG Siyan XU Ying +1 位作者 ZHOU Botao SHI Ying 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第8期1077-1091,共15页
Given that climate extremes in China might have serious regional and global consequences, an increasing number of studies are examining temperature extremes in China using the Coupled Model Intercomparison Project Pha... Given that climate extremes in China might have serious regional and global consequences, an increasing number of studies are examining temperature extremes in China using the Coupled Model Intercomparison Project Phase 5 (CMIP5) models. This paper investigates recent changes in temperature extremes in China using 25 state-of-the-art global climate models participating in CMIP5. Thirteen indices that represent extreme temperature events were chosen and derived by daily maximum and minimum temperatures, including those representing the intensity (absolute indices and threshold indices), duration (duration indices), and frequency (percentile indices) of extreme temperature. The overall performance of each model is summarized by a "portrait" diagram based on relative root-mean-square error, which is the RMSE relative to the median RMSE of all models, revealing the multi-model ensemble simulation to be better than individual model for most indices. Compared with observations, the models are able to capture the main features of the spatial distribution of extreme temperature during 1986-2005. Overall, the CMIP5 models are able to depict the observed indices well, and the spatial structure of the ensemble result is better for threshold indices than frequency indices. The spread amongst the CMIP5 models in different subregions for intensity indices is small and the median CMIP5 is close to observations; however, for the duration and frequency indices there can be wide disagreement regarding the change between models and observations in some regions. The model ensemble also performs well in reproducing the observational trend of temperature extremes. All absolute indices increase over China during 1961-2005. 展开更多
关键词 temperature extremes China cmip5 model evaluation
下载PDF
Representation of the Arctic Oscillation in the CMIP5 Models 被引量:4
6
作者 ZUO Jin-Qing LI Wei-Jing REN Hong-Li 《Advances in Climate Change Research》 SCIE 2013年第4期242-249,共8页
The temporal variability and spatial pattern of the Arctic Oscillation(AO)simulated in the historical experiment of26 coupled climate models participating in the Coupled Model Intercomparison Project Phase 5(CMIP5)are... The temporal variability and spatial pattern of the Arctic Oscillation(AO)simulated in the historical experiment of26 coupled climate models participating in the Coupled Model Intercomparison Project Phase 5(CMIP5)are evaluated.Spectral analysis of the monthly AO index indicates that 23 out of the 26 CMIP5 models exhibit no statistically significant spectral peak in the historical experiment,as seen in the observations.These models are able to reproduce the AO pattern in the sea level pressure anomaly field during boreal winter,but the intensity of the AO pattern tends to be overestimated in all the models.The zonal-mean zonal wind anomalies associated with the AO is dominated by a meridional dipole in the mid-high latitudes of the Northern Hemisphere during boreal winter,which is well reproduced by only a few models.Most models show significant biases in both strength and location of the dipole compared to the observation.In considering the temporal variability as well as spatial structures in both horizontal and vertical directions,the MPI-ESM-P model reproduces an AO pattern that resembles the observation the best. 展开更多
关键词 M-P模型 北极涛动 表示法 纬向风异常 耦合模式 海平面气压 北半球 空间格局
下载PDF
Projections of changes in marine environment in coastal China seas over the 21^st century based on CMIP5 models 被引量:5
7
作者 TAN Hongjian CAI Rongshuo +1 位作者 HUO Yunlong GUO Haixia 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2020年第6期1676-1691,共16页
The increases of atmospheric carbon dioxide and other greenhouse gases have caused fundamental changes to the physical and biogeochemical properties of the oceans,and it will continue to occur in the foreseeable futur... The increases of atmospheric carbon dioxide and other greenhouse gases have caused fundamental changes to the physical and biogeochemical properties of the oceans,and it will continue to occur in the foreseeable future.Based on the outputs of nine Earth System Models from the fifth phase of the Coupled Model Intercomparison Project(CMIP5),in this study,we provided a synoptic assessment of future changes in the sea surface temperature(SST),salinity,dissolved oxygen(DO),seawater pH,and marine net primary productivity(NPP)in the coastal China seas over the 21st century.The results show that the mid-high latitude areas of the coastal China seas(East China Seas(ECS),including the Bohai Sea,Yellow Sea,and East China Sea)will be simultaneously exposed to enhanced warming,deoxygenation,acidification,and decreasing NPP as a consequence of increasing greenhouse gas emissions.The magnitudes of the changes will increase as the greenhouse gas concentrations increase.Under the high emission scenario(Representative Concentration Pathway 8.5),the ECS will experience an SST increase of 3.24±1.23℃,a DO concentration decrease of 10.90±3.92μmol/L(decrease of 6.3%),a pH decline of 0.36±0.02,and a NPP reduction of-17.7±6.2 mg/(m2·d)(decrease of 12.9%)relative to the current levels(1980-2005)by the end of this century.The co-occurrence of these changes and their cascade effects are expected to induce considerable biological and ecological responses,thereby making the ECS among the most vulnerable ocean areas to future climate change.Despite high uncertainties,our results have important implications for regional marine assessments. 展开更多
关键词 Coupled model Intercomparison Project(cmip5) sea surface temperature(SST) dissolved oxygen(DO) seawater pH net primary productivity
下载PDF
Asymmetry of Surface Climate Change under RCP2.6 Projections from the CMIP5 Models 被引量:3
8
作者 辛晓歌 程彦杰 +2 位作者 汪方 吴统文 张洁 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第3期796-805,共10页
The multi-model ensemble (MME) of 20 models from the Coupled Model Intercomparison Project Phase Five (CMIP5) was used to analyze surface climate change in the 21st century under the representative con- centration... The multi-model ensemble (MME) of 20 models from the Coupled Model Intercomparison Project Phase Five (CMIP5) was used to analyze surface climate change in the 21st century under the representative con- centration pathway RCP2.6, to reflect emission mitigation efforts. The maximum increase of surface air temperature (SAT) is 1.86℃ relative to the pre-industrial level, achieving the target to limit the global warming to 2℃. Associated with the "increase-peak-decline" greenhouse gases (GHGs) concentration path- way of RCP2.6, the global mean SAT of MME shows opposite trends during two time periods: warming during 2006-55 and cooling during 2056-2100. Our results indicate that spatial distribution of the linear trend of SAT during the warming period exhibited asymmetrical features compared to that during the cool- ing period. The warming during 2006-55 is distributed globally, while the cooling during 2056-2100 mainly occurred in the NH, the South Indian Ocean, and the tropical South Atlantic Ocean. Different dominant roles of heat flux in the two time periods partly explain the asymmetry. During the warming period, the latent heat flux and shortwave radiation both play major roles in heating the surface air. During the cooling period, the increase of net longwave radiation partly explains the cooling in the tropics and subtropics, which is associated with the decrease of total cloud amount. The decrease of the shortwave radiation accounts for the prominent cooling in the high latitudes of the NH. The surface sensible heat flux, latent heat flux, and shortwave radiation collectively contribute to the especial warming phenomenon in the high-latitude of the SH during the cooling period. 展开更多
关键词 climate models climate change PROJECTION cmip5 RCP2.6
下载PDF
Evaluating the Formation Mechanisms of the Equatorial Pacific SST Warming Pattern in CMIP5 Models 被引量:1
9
作者 Jun YING Ping HUANG Ronghui HUANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第4期433-441,共9页
Based on the historical and RCP8.5 runs of the multi-model ensemble of 32 models participating in CMIP5, the present study evaluates the formation mechanisms for the patterns of changes in equatorial Pacific SST under... Based on the historical and RCP8.5 runs of the multi-model ensemble of 32 models participating in CMIP5, the present study evaluates the formation mechanisms for the patterns of changes in equatorial Pacific SST under global warming. Two features with complex formation processes, the zonal E1 Nifio-like pattern and the meridional equatorial peak warm- ing (EPW), are investigated. The climatological evaporation is the main contributor to the E1 Nifio-like pattern, while the ocean dynamical thermostat effect plays a comparable negative role. The cloud-shortwave-radiation-SST feedback and the weakened Walker circulation play a small positive role in the E1 Nifio-like pattern. The processes associated with ocean dynamics are confined to the equator. The climatological evaporation is also the dominant contributor to the EPW pattern, as suggested in previous studies. However, the effects of some processes are inconsistent with previous studies. For example, changes in the zonal heat advection due to the weakened Walker circulation have a remarkable positive contribution to the EPW pattern, and changes in the shortwave radiation play a negative role in the EPW pattern. 展开更多
关键词 global warming equatorial Pacific SST warming pattern multi-model ensemble cmip5
下载PDF
Climatology and interannual variability of the annual mean Hadley circulation in CMIP5 models
10
作者 GUO Yi-Peng LI Jian-Ping FENG Juan 《Advances in Climate Change Research》 SCIE CSCD 2016年第1期35-45,共11页
Using 26 climate models from the Coupled Model Intercomparison Project Phase 5(CMIP5), climatology and the interannual variability of the annual mean Hadley circulation are evaluated. The results show that most of 26 ... Using 26 climate models from the Coupled Model Intercomparison Project Phase 5(CMIP5), climatology and the interannual variability of the annual mean Hadley circulation are evaluated. The results show that most of 26 models perform well in simulating the spatial structure of the climatology of the annual mean Hadley circulation, but the results derived from these models are generally weaker than that derived from the reanalysis dataset. Eighteen models can properly simulate well the asymmetric mode and symmetric mode of the annual mean Hadley circulation variability. Two models can only simulate asymmetric mode or symmetric mode and the other two models simulate reversed sequences of asymmetric mode and symmetric mode.The possible reason why some models cannot properly simulate the asymmetric mode and symmetric mode is that these models do not properly simulate the structure of zonal mean sea surface temperature(SST). Especially, not properly simulating variances of symmetric and asymmetric components of the SSTA will lead to reversed sequence of symmetric mode and asymmetric mode. And not properly simulated either symmetric or asymmetric component of the SSTA will lead to inability in simulating symmetric mode or asymmetric mode. On the other hand, some models properly simulate the asymmetric mode and symmetric mode, but do not properly simulate the responses to SST change.These models can not reflect the air sea coupling processes in associated with the Hadley circulation, therefore they should be taken more care when classify the models into groups. 展开更多
关键词 模拟模型 年际变化 气候学 平均 对称模式 SSTA 空间结构 海表面温度
下载PDF
An assessment of the CMIP5 models in simulating the Argo geostrophic meridional transport in the North Pacifi c Ocean
11
作者 LI Xiang YUAN Dongliang 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2020年第5期1445-1463,共19页
Eleven climate system models that participate in the Coupled Model Intercomparison Project phase 5(CMIP5)were evaluated based on an assessment of their simulated meridional transports in comparison with the Sverdrup t... Eleven climate system models that participate in the Coupled Model Intercomparison Project phase 5(CMIP5)were evaluated based on an assessment of their simulated meridional transports in comparison with the Sverdrup transports.The analyses show that the simulated North Pacifi c Ocean circulation is essentially in Sverdrup balance in most of the 11 models while the Argo geostrophic meridional transports indicate signifi cant non-Sverdrup gyre circulation in the tropical North Pacifi c Ocean.The climate models overestimated the observed tropical and subtropical volume transports signifi cantly.The non-Sverdrup gyre circulation leads to non-Sverdrup heat and salt transports,the absence of which in the CMIP5 simulations suggests defi ciencies of the CMIP5 model dynamics in simulating the realistic meridional volume,heat,and salt transports of the ocean. 展开更多
关键词 Coupled model Intercomparison Project phase 5(cmip5)models Sverdrup balance meridional transport Argo geostrophic currents
下载PDF
CMIP5/6气候模式对ElNiño多样性模拟能力的评估 被引量:1
12
作者 王卫强 张茜娅 +2 位作者 徐康 李俊灵 苗浩宇 《热带海洋学报》 CAS CSCD 北大核心 2023年第2期21-33,共13页
利用第五次和第六次国际间耦合模式比较计划(coupled model intercomparison project,CMIP)中全球气候模式的历史时期和未来增暖情景模拟结果,结合观测资料,文章对比评估了23个CMIP6模式和32个CMIP5模式对El Niño多样性的模拟能力... 利用第五次和第六次国际间耦合模式比较计划(coupled model intercomparison project,CMIP)中全球气候模式的历史时期和未来增暖情景模拟结果,结合观测资料,文章对比评估了23个CMIP6模式和32个CMIP5模式对El Niño多样性的模拟能力,并预估了东部(eastern Pacific,EP)型和中部(central Pacific,CP)型El Niño对未来全球变暖的响应特征。结果表明,绝大多数CMIP5/6气候模式能够合理地模拟El Niño的多样性特征,且CMIP6多模式的模拟性能较CMIP5有明显提升。CMIP6模式不仅减弱了EP型El Niño空间模态模拟的离散性,而且还显著提高了CP型El Niño空间模态的模拟能力;CMIP5/6多模式基本能够模拟出两类El Niño的季节锁相性特征,但CP型El Niño衰亡时间较观测明显滞后3个月;同时CMIP5/6多模式模拟的EP型El Niño强度与观测值较为接近,但CP型El Niño的振幅却强于观测。在未来全球变暖背景下,CP型El Niño事件的发生频率相对于EP型事件将趋于降低;EP型和CP型El Niño振幅强度随着全球变暖加剧将被增强,且EP型增强幅度显著强于CP型。 展开更多
关键词 cmip5/6气候模式 东部型El Niño 中部型El Niño 全球变暖 未来预估
下载PDF
Contributions of anthropogenic and external natural forcings to climate changes over China based on CMIP5 model simulations 被引量:5
13
作者 ZHAO Tian Bao LI Chun Xiang ZUO Zhi Yan 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第3期503-517,共15页
Based on observations and historical simulations from the fifth phase of the Coupled Model Intercomparison Project(CMIP5) archive, the contributions of human activities(including greenhouse gases(GHGs), anthropogenic ... Based on observations and historical simulations from the fifth phase of the Coupled Model Intercomparison Project(CMIP5) archive, the contributions of human activities(including greenhouse gases(GHGs), anthropogenic aerosols(AAs), and land use(LU)) and external natural forcings(Nat) to climate changes in China over the past 50 years were quantified. Both anthropogenic and external natural forcings account for 95%–99% of the observed temperature change from 1951–1975 to 1981–2005. In particular, the temperature changes induced by GHGs are approximately 2–3 times stronger than the observed changes, and AAs impose a significant cooling effect. The total external forcings can explain 65%–78% of the observed precipitation changes over the past 50 years, in which AAs and GHGs are the primary external forcings leading to the precipitation changes; in particular, AAs dominate the main spatial features of precipitation changes in eastern China. Human activities also dominate the long-term non-linear trends in observed temperature during the past several decades, and, in particular, GHGs, the primary warming contributor, have produced significant warming since the 1960 s. Compared to the long-term non-linear trends in observed precipitation, GHGs have largely caused the wetting changes in the arid-semiarid region since the 1970 s, whereas AAs have led to the drying changes in the humid-semihumid region; both LU and Nat can impose certain impacts on the long-term non-linear trends in precipitation. Using the optimal fingerprinting detection approach, the effects of human activities on the temperature changes can be detected and attributed in China, and the effect of GHGs can be clearly detected from the observations in humid-semihumid areas. However, the anthropogenic effects cannot be detected in the observed precipitation changes, which may be due to the uncertainties in the model simulations and to other issues. Although some results in this paper still need improvement due to uncertainties in the coupled models, this study is expected to provide the background and scientific basis for climate changes to conduct vulnerability and risk assessments of the ecological systems and water resources in the arid-semiarid region of China. 展开更多
关键词 中国东部 气候变化 自然力 模式模拟 干旱半干旱地区 原子吸收光谱法 原子吸收分光光度法 半湿润地区
原文传递
Introduction of CMIP5 Experiments Carried out with the Climate System Models of Beijing Climate Center 被引量:16
14
作者 XIN Xiao-Ge WU Tong-Wen ZHANG Jie 《Advances in Climate Change Research》 SCIE 2013年第1期41-49,共9页
The climate system models from Beijing Climate Center, BCC_CSM1.1 and BCC_CSM1.1-M, are used to carry out most of the CMIP5 experiments. This study gives a general introduction of these two models, and provides main i... The climate system models from Beijing Climate Center, BCC_CSM1.1 and BCC_CSM1.1-M, are used to carry out most of the CMIP5 experiments. This study gives a general introduction of these two models, and provides main information on the experiments including the experiment purpose, design, and the external forcings. The transient climate responses to the CO2 concentration increase at 1% per year are presented in the simulation of the two models. The BCC_CSM1.1-M result is closer to the CMIP5 multiple models ensemble. The two models perform well in simulating the historical evolution of the surface air temperature, globally and averaged for China. Both models overestimate the global warming and underestimate the warming over China in the 20th century. With higher horizontal resolution, the BCC_CSM1.1-M has a better capability in reproducing the annual evolution of surface air temperature over China. 展开更多
关键词 气候系统模式 实验目的 北京 CO2浓度增加 模型仿真 全球变暖 水平分辨率 气候响应
下载PDF
Performance of CMIP5 Models in the Simulation of Climate Characteristics of Synoptic Patterns over East Asia 被引量:4
15
作者 王永弟 江志红 陈威霖 《Journal of Meteorological Research》 SCIE CSCD 2015年第4期594-607,共14页
The evolution of daily synoptic weather patterns is the main driver of day-to-day weather change. These patterns are generally associated with changes in temperature, precipitation, etc., especially during extreme wea... The evolution of daily synoptic weather patterns is the main driver of day-to-day weather change. These patterns are generally associated with changes in temperature, precipitation, etc., especially during extreme weathers. Evaluating the ability of climate models to reproduce the frequency and intensity of daily synoptic patterns is essential for increasing confidence in future projections. In this study, we investigated the ability of 34 global climate models (GCMs) included in the Coupled Model Intercomparison Project Phase 5 (CMIP5) to simulate synoptic patterns over East Asia and their evolution features in winter and summer. Daily synoptic patterns in sea level pressure and their occurrence frequencies were identified by using an objective clustering algorithm, self-organizing maps (SOMs). The evaluation consists of correlating the frequencies of these patterns in the 34 CMIP5 models with the frequencies in the NCEP reanalysis during the baseline period of 1980-1999. The results illustrated that most of these models were able to reproduce the synoptic patterns of the NCEP reanalysis. In addition, the frequencies of temporal sea level pressure (SLP) anomaly patterns were reproduced by most of the models over the baseline period, but the frequencies of spatial SLP anomaly patterns were only reproduced by a few GCMs. Overall, the models performed better in summer than in winter. Comprehensive evaluation shows that the four top-performing models for both winter and summer are bcc-csml-l-m, NorESM1-M, MRI-CGCM3, and CCSM4. They show good performance in simulating the daily synoptic patterns in SLP and in reproducing their occurrence frequencies. The results showed that the SOM was an effective tool for differentiating characteristics of synoptic circulation patterns and for evaluating the ability of climate models to simulate the frequency of daily synoptic patterns. The results can also help users to choose a better model for future climate projection and downscaling over East Asia. 展开更多
关键词 cmip5 climate model evaluation self-organizing maps atmospheric circulation pattern
原文传递
基于CMIP5模式与VIC模型耦合的滦河流域未来气候及径流变化研究 被引量:2
16
作者 孙晓露 任政 +1 位作者 龚家国 孟鹏飞 《中国农村水利水电》 北大核心 2023年第3期39-46,52,共9页
滦河流域是京津冀地区重要的生态屏障,在全球变暖的背景下,研究滦河流域未来气候及径流变化情势对京津冀地区的发展具有重要意义。基于VIC模型模拟滦河流域历史径流,利用相关系数、中心均方根误差、标准差和均值构建CMIP5未来全球气候... 滦河流域是京津冀地区重要的生态屏障,在全球变暖的背景下,研究滦河流域未来气候及径流变化情势对京津冀地区的发展具有重要意义。基于VIC模型模拟滦河流域历史径流,利用相关系数、中心均方根误差、标准差和均值构建CMIP5未来全球气候模式评价指标体系,并对其做归一化处理,从各模式中选取最优的降水、最高气温、最低气温及风速数据以分析滦河流域未来气候变化。采用Delta法进行气象要素空间降尺度,将VIC模型与CMIP5全球气候模式耦合,开展滦河流域未来径流变化情势分析。结果表明:VIC模型在滦河流域的径流模拟效果令人满意。在年际上,未来年降水量、日最高与最低气温均呈上升趋势,未来日平均风速无明显上升趋势。在年内分配上,与历史期同月份相比,未来月平均降水量有增有减,其中10月份增加率最高,达138.64%;未来月平均最高气温均升高,9月份变化最大,平均升高2.45℃;未来月平均最低气温平均升高3.24℃,其中2月份变化最大,平均升高4.45℃;不同月份未来风速有升有降,其中8月份变化最大,平均升高0.23 m/s,升高率达16.35%。未来期的多年平均流量为134.41 m^(3)/s,比历史期增加9.96%。未来年流量平均以10.2 m^(3)(/s·10 a)的速度波动上升。其中,2020s和2080s的年流量平均以12.8和28.9 m^(3)(/s·10 a)的速度波动上升,上升趋势显著。夏季径流占比由历史期的53%降至43%,冬季径流占比由7%升至12%。 展开更多
关键词 气候变化 滦河流域 未来径流 VIC水文模型 cmip5
下载PDF
SST biases over the Northwest Pacific and possible causes in CMIP5 models 被引量:2
17
作者 Chenqi WANG Liwei ZOU Tianjun ZHOU 《Science China Earth Sciences》 SCIE EI CAS CSCD 2018年第6期792-803,共12页
In this paper, the features and possible causes of sea surface temperature(SST) biases over the Northwest Pacific are investigated based on a mixed-layer heat budget analysis in 21 coupled general circulation models(C... In this paper, the features and possible causes of sea surface temperature(SST) biases over the Northwest Pacific are investigated based on a mixed-layer heat budget analysis in 21 coupled general circulation models(CGCMs) from phase 5 of the Coupled Model Inter-comparison Project(CMIP5). Most CMIP5 models show cold SST biases throughout the year over the Northwest Pacific. The largest biases appear during summer, and the smallest biases occur during winter. These cold SST biases are seen at the basin scale and are mainly located in the inner region of the low and mid-latitudes. According to the mixed-layer heat budget analysis, overestimation of upward net sea surface heat fluxes associated with atmospheric processes are primarily responsible for the cold SST biases. Among the different components of surface heat fluxes, overestimated upward latent heat fluxes induced by the excessively strong surface winds contribute the most to the cold SST biases during the spring, autumn, and winter seasons. Conversely, during the summer, overestimated upward latent heat fluxes and underestimated downward solar radiations at the sea surface are equally important. Further analysis suggests that the overly strong surface winds over the Northwest Pacific during winter and spring are associated with excessive precipitation over the Maritime Continent region,whereas those occurring during summer and autumn are associated with the excessive northward extension of the intertropical convergence zone(ITCZ). The excessive precipitation over the Maritime Continent region and the biases in the simulated ITCZ induce anomalous northeasterlies, which are in favor of enhancing low-level winds over the North Pacific. The enhanced surface wind increases the sea surface evaporation, which contributes to the excessive upward latent heat fluxes. Thus, the SST over the Northwest Pacific cools. 展开更多
关键词 西北太平洋 联合模型 SST 偏爱 原因 表面蒸发 热流动 内部区域
原文传递
基于CMIP5模式的不同集合方法对鄱阳湖流域降水及气温模拟能力的比较 被引量:2
18
作者 吴滨 刘卫林 +3 位作者 郭慧芳 李香 何昊 刘丽娜 《中国农村水利水电》 北大核心 2023年第1期119-127,共9页
全球气候模式被广泛应用于未来气候模拟及评估,其对地区实际气候模拟的准确性决定了研究结论的可靠性。为探索不同集合方法对降水和气温的模拟能力,基于第五次耦合模式比较计划CMIP5中的19个气候模式历史数据,比较了各模式对鄱阳湖流域... 全球气候模式被广泛应用于未来气候模拟及评估,其对地区实际气候模拟的准确性决定了研究结论的可靠性。为探索不同集合方法对降水和气温的模拟能力,基于第五次耦合模式比较计划CMIP5中的19个气候模式历史数据,比较了各模式对鄱阳湖流域气候的模拟能力,并选出最优模式;在此基础上,运用集合算术平均及贝叶斯模型平均(BMA)方法,构建了全模式等权集合、择优模式等权集合、全模式BMA集合及择优模式BMA集合4种多模式集合模型,评估了各集合模型对鄱阳湖流域气候变化的模拟能力。结果表明:①单模式及集合模型对气温的模拟能力优于对降水的模拟能力;②在年尺度上,全模式等权集合和择优模式等权集合模型低估了流域的多年平均气温及降水,而全模式BMA和择优模式BMA模型能较好地描述流域多年气候平均态,其中择优模式BMA模型优于全模式BMA;在月尺度上,全模式BMA模型在气温及降水的率定期与验证期均有着较好的模拟效果;③全模式BMA集合和择优模式BMA集合模型模拟的气温呈现南高北低、东高西低的分布特征,降水表现出东高西低、北高南低的分布特征,相较于全模式等权集合和择优模式等权集合模型能更好地再现流域降水与气温空间变化总体特征。建议使用BMA集合方法或对等权集合模拟值进行校正以提高多模式集合模拟精度。 展开更多
关键词 cmip5 鄱阳湖流域 多模式集合 降水 气温
下载PDF
Future Changes in the Impact of North Pacific Midlatitude Oceanic Frontal Intensity on the Wintertime Storm Track in CMIP5 Models 被引量:1
19
作者 Yao YAO Zhong ZHONG +1 位作者 Xiu-Qun YANG Xiaogang HUANG 《Journal of Meteorological Research》 SCIE CSCD 2020年第6期1199-1213,共15页
The storm track and oceanic front play an important role in the midlatitude air–sea interaction.In this study,future changes in the impact of the North Pacific midlatitude oceanic frontal intensity on the wintertime ... The storm track and oceanic front play an important role in the midlatitude air–sea interaction.In this study,future changes in the impact of the North Pacific midlatitude oceanic frontal intensity on the wintertime storm track are projected based on climate model outputs from the Coupled Model Intercomparison Project Phase 5(CMIP5).The performance of 13 CMIP5 models is evaluated,and it is found that a majority of these models are capable of reproducing the northward intensification of the storm track in response to the strengthened oceanic front.The ensemble means of outputs from six best models under three Representative Concentration Pathway(RCP)scenarios(RCP2.6,RCP4.5,and RCP8.5)are compared with the results of the historical simulation,and future changes are projected.It is found that the impact of the oceanic frontal intensity on the storm track tends to get stronger and extends further westward in a warming climate,and the largest increase appears in the RCP8.5 run.Further analysis reveals that the stronger impact of the oceanic front on the storm track in the future may be partially attributed to the greater oceanic frontal impact on the near-surface baroclinicity,which is mainly related to the intensified oceanic frontal impact on the meridional potential temperature gradient under the climate change scenario.However,this process can hardly explain the increasing impact of the oceanic front on the upstream of the storm track. 展开更多
关键词 storm track midlatitude oceanic front climate change Coupled model Intercomparison Project Phase 5(cmip5)
原文传递
Simulations of dissolved oxygen concentration in CMIP5 Earth system models
20
作者 BAO Ying LI Yangchun 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第12期28-37,共10页
The climatologies of dissolved oxygen concentration in the ocean simulated by nine Earth system models(ESMs) from the historical emission driven experiment of CMIP5(Phase 5 of the Climate Model Intercomparison Project... The climatologies of dissolved oxygen concentration in the ocean simulated by nine Earth system models(ESMs) from the historical emission driven experiment of CMIP5(Phase 5 of the Climate Model Intercomparison Project) are quantitatively evaluated by comparing the simulated oxygen to the WOA09 observation based on common statistical metrics. At the sea surface, distribution of dissolved oxygen is well simulated by all nine ESMs due to well-simulated sea surface temperature(SST), with both globally-averaged error and root mean square error(RMSE) close to zero, and both correlation coefficients and normalized standard deviation close to 1. However, the model performance differs from each other at the intermediate depth and deep ocean where important water masses exist. At the depth of 500 to 1 000 m where the oxygen minimum zones(OMZs) exist, all ESMs show a maximum of globally-averaged error and RMSE, and a minimum of the spatial correlation coefficient. In the ocean interior, the reason for model biases is complicated, and both the meridional overturning circulation(MOC) and the particulate organic carbon flux contribute to the biases of dissolved oxygen distribution. Analysis results show the physical bias contributes more. Simulation bias of important water masses such as North Atlantic Deep Water(NADW), Antarctic Bottom Water(AABW) and North Pacific Intermediate Water(NPIW) indicated by distributions of MOCs greatly affects the distributions of oxygen in north Atlantic, Southern Ocean and north Pacific, respectively.Although the model simulations of oxygen differ greatly from each other in the ocean interior, the multi-model mean shows a better agreement with the observation. 展开更多
关键词 dissolved oxygen cmip5 Earth system model meridional overturning circulation particulate organic carbon flux
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部