A RF low noise amplifier,integrated in a single bluetooth transceiver chip and fabricated in 0.35μm digital CMOS technology,is presented.Under the consideration of ESD protection and package,design methodology is dis...A RF low noise amplifier,integrated in a single bluetooth transceiver chip and fabricated in 0.35μm digital CMOS technology,is presented.Under the consideration of ESD protection and package,design methodology is discussed from the aspects of noise optimization,impedance match,and forward gain.At 2.05GHz,the measured S 11 is -6.4dB, S 21 is 11dB with 3dB-BW of 300MHz,and NF is about 5.3dB.It indicates that comprehensive consideration of parasitics,package model,and reasonable process is necessary for RF circuit design.展开更多
This paper presents a dual-band low noise amplifier for the receiver of a global navigation satellite system. The differences between single band and multi-band design methods are discussed. The relevant parameter ana...This paper presents a dual-band low noise amplifier for the receiver of a global navigation satellite system. The differences between single band and multi-band design methods are discussed. The relevant parameter analysis and the details of circuit design are presented. The test chip was implemented in a TSMC 0.18 μm 1P4M RF CMOS process. The LNA achieves a gain of 16.8 dB/18.9 dB on 1.27 GHz/1.575 GHz. The measured noise figure is around 1.5-1.7 dB on both bands. The LNA consumes less than 4.3 mA of current from a 1.8 V power supply. The measurement results show consistency with the design. And the LNA can fully satisfy the demands of the GNSS receiver.展开更多
To implement a fully-integrated on-chip CMOS power amplifier(PA) for RFID readers,the resonant frequency of each matching network is derived in detail.The highlight of the design is the adoption of a bonding wire as...To implement a fully-integrated on-chip CMOS power amplifier(PA) for RFID readers,the resonant frequency of each matching network is derived in detail.The highlight of the design is the adoption of a bonding wire as the output-stage inductor.Compared with the on-chip inductors in a CMOS process,the merit of the bondwire inductor is its high quality factor,leading to a higher output power and efficiency.The disadvantage of the bondwire inductor is that it is hard to control.A highly integrated class-E PA is implemented with 0.18-μm CMOS process.It can provide a maximum output power of 20 dBm and a 1 dB output power of 14.5 dBm.The maximum power-added efficiency(PAE) is 32.1%.Also,the spectral performance of the PA is analyzed for the specified RFID protocol.展开更多
This paper presents a high-gain wideband low-noise IF amplifier aimed for the ALMA front end system using 90-nm LP CMOS technology.A topology of three optimized cascading stages is proposed to achieve a flat and wideb...This paper presents a high-gain wideband low-noise IF amplifier aimed for the ALMA front end system using 90-nm LP CMOS technology.A topology of three optimized cascading stages is proposed to achieve a flat and wideband gain.Incorporating an input inductor and a gate-inductive gain-peaking inductor,the active shunt feedback technique is employed to extend the matching bandwidth and optimize the noise figure.The circuit achieves a flat gain of 30.5 dB with 3 dB bandwidth of 1-16 GHz and a minimum noise figure of 3.76 dB.Under 1.2 V supply voltage,the proposed IF amplifier consumes 42 mW DC power.The chip die including pads takes up 0.53 mm~2,while the active area is only 0.022 mm~2.展开更多
This paper presents a fully differential dual gain low noise amplifier(DGLNA) for low power 2.45-GHz ZigBee/IEEE 802.15.4 applications.The effect of input parasitics on the inductively degenerated cascode LNA is ana...This paper presents a fully differential dual gain low noise amplifier(DGLNA) for low power 2.45-GHz ZigBee/IEEE 802.15.4 applications.The effect of input parasitics on the inductively degenerated cascode LNA is analyzed.Circuit design details within the guidelines of the analysis are presented.The chip was implemented in SMIC 0.18-μm 1P6M RF/mixed signal CMOS process.The DGLNA achieves a maximum gain of 8 dB and a minimum gain of 1 dB with good input return loss.In high gain mode, the measured noise figure(NF) is 2.3-3 dB in the whole 2.45-GHz ISM band.The measured 1-dB compression point, IIP3 and IIP2 is-9, 1 and 33 dBm, respectively.The DGLNA consumes 2 mA of current from a 1.8 V power supply.展开更多
This paper investigated the DC and RF performance of the In P double heterojunction bipolar transistors(DHBTs)transferred to RF CMOS wafer substrate.The measurement results show that the maximum values of the DC cur...This paper investigated the DC and RF performance of the In P double heterojunction bipolar transistors(DHBTs)transferred to RF CMOS wafer substrate.The measurement results show that the maximum values of the DC current gain of a substrate transferred device had one emitter finger,of 0.8μm in width and 5μm in length,are changed unobviously,while the cut-off frequency and the maximum oscillation frequency are decreased from 220to 171 GHz and from 204 to 154 GHz,respectively.In order to have a detailed insight on the degradation of the RF performance,small-signal models for the In P DHBT before and after substrate transferred are presented and comparably extracted.The extracted results show that the degradation of the RF performance of the device transferred to RF CMOS wafer substrate are mainly caused by the additional introduced substrate parasitics and the increase of the capacitive parasitics induced by the substrate transfer process itself.展开更多
A broadband programmable gain amplifier(PGA) with a small gain step and low gain error has been designed in 0.13 m CMOS technology. The PGA was implemented with open-loop architecture to provide wide bandwidth. A tw...A broadband programmable gain amplifier(PGA) with a small gain step and low gain error has been designed in 0.13 m CMOS technology. The PGA was implemented with open-loop architecture to provide wide bandwidth. A two-stage gain control method, which consists of a resistor ladder attenuator and an active fine gain control stage, provides the small gain step. A look-up table based gain control method is introduced in the fine gain control stage to lower the gain error.The proposedPGAshows a decibel-linear variable gainfrom4 to20 dB with a gain step of 0.1 dB and a gain error less than˙0.05 dB. The 3-dB bandwidth and maximum IIP3 are 3.8 GHz and 17 dBm, respectively.展开更多
A fourth-order Gm-C Chebyshev low-pass filter is presented as channel selection filter for reconfigurable multi-mode wireless receivers. Low-noise technologies are proposed in optimizing the noise characteristics of b...A fourth-order Gm-C Chebyshev low-pass filter is presented as channel selection filter for reconfigurable multi-mode wireless receivers. Low-noise technologies are proposed in optimizing the noise characteristics of both the Gm cells and the filter topology. A frequency tuning strategy is used by tuning both the transconductance of the Gm cells and the capacitance of the capacitor banks. To achieve accurate cut-off frequencies, an on-chip calibration circuit is presented to compensate for the frequency inaccuracy introduced by process variation. The filter is fabricated in a 0.13 m CMOS process. It exhibits a wide programmable bandwidth from 322.5 k Hz to20 MHz. Measured results show that the filter has low input referred noise of 5.9 n V/(Hz)^(1/2) and high out-of-band IIP3 of 16.2 d Bm. It consumes 4.2 and 9.5 m W from a 1 V power supply at its lowest and highest cut-off frequencies respectively.展开更多
文摘A RF low noise amplifier,integrated in a single bluetooth transceiver chip and fabricated in 0.35μm digital CMOS technology,is presented.Under the consideration of ESD protection and package,design methodology is discussed from the aspects of noise optimization,impedance match,and forward gain.At 2.05GHz,the measured S 11 is -6.4dB, S 21 is 11dB with 3dB-BW of 300MHz,and NF is about 5.3dB.It indicates that comprehensive consideration of parasitics,package model,and reasonable process is necessary for RF circuit design.
文摘This paper presents a dual-band low noise amplifier for the receiver of a global navigation satellite system. The differences between single band and multi-band design methods are discussed. The relevant parameter analysis and the details of circuit design are presented. The test chip was implemented in a TSMC 0.18 μm 1P4M RF CMOS process. The LNA achieves a gain of 16.8 dB/18.9 dB on 1.27 GHz/1.575 GHz. The measured noise figure is around 1.5-1.7 dB on both bands. The LNA consumes less than 4.3 mA of current from a 1.8 V power supply. The measurement results show consistency with the design. And the LNA can fully satisfy the demands of the GNSS receiver.
文摘To implement a fully-integrated on-chip CMOS power amplifier(PA) for RFID readers,the resonant frequency of each matching network is derived in detail.The highlight of the design is the adoption of a bonding wire as the output-stage inductor.Compared with the on-chip inductors in a CMOS process,the merit of the bondwire inductor is its high quality factor,leading to a higher output power and efficiency.The disadvantage of the bondwire inductor is that it is hard to control.A highly integrated class-E PA is implemented with 0.18-μm CMOS process.It can provide a maximum output power of 20 dBm and a 1 dB output power of 14.5 dBm.The maximum power-added efficiency(PAE) is 32.1%.Also,the spectral performance of the PA is analyzed for the specified RFID protocol.
基金supported by the National Basic Research Program of China(No.2010CB327404)the National Natural Science Foundation of China(No.60901012)support from the Institute of RF & OE ICs,Southeast University and Engineering Research Center of RF-ICs & RF-Systems,Ministry of Education
文摘This paper presents a high-gain wideband low-noise IF amplifier aimed for the ALMA front end system using 90-nm LP CMOS technology.A topology of three optimized cascading stages is proposed to achieve a flat and wideband gain.Incorporating an input inductor and a gate-inductive gain-peaking inductor,the active shunt feedback technique is employed to extend the matching bandwidth and optimize the noise figure.The circuit achieves a flat gain of 30.5 dB with 3 dB bandwidth of 1-16 GHz and a minimum noise figure of 3.76 dB.Under 1.2 V supply voltage,the proposed IF amplifier consumes 42 mW DC power.The chip die including pads takes up 0.53 mm~2,while the active area is only 0.022 mm~2.
基金supported by the Innovation Fund of Fudan University,Shanghai, China
文摘This paper presents a fully differential dual gain low noise amplifier(DGLNA) for low power 2.45-GHz ZigBee/IEEE 802.15.4 applications.The effect of input parasitics on the inductively degenerated cascode LNA is analyzed.Circuit design details within the guidelines of the analysis are presented.The chip was implemented in SMIC 0.18-μm 1P6M RF/mixed signal CMOS process.The DGLNA achieves a maximum gain of 8 dB and a minimum gain of 1 dB with good input return loss.In high gain mode, the measured noise figure(NF) is 2.3-3 dB in the whole 2.45-GHz ISM band.The measured 1-dB compression point, IIP3 and IIP2 is-9, 1 and 33 dBm, respectively.The DGLNA consumes 2 mA of current from a 1.8 V power supply.
基金Project supported by the National Natural Science Foundation of China(No.61331006)the Natural Science Foundation of Zhejiang Province(No.Y14F010017)
文摘This paper investigated the DC and RF performance of the In P double heterojunction bipolar transistors(DHBTs)transferred to RF CMOS wafer substrate.The measurement results show that the maximum values of the DC current gain of a substrate transferred device had one emitter finger,of 0.8μm in width and 5μm in length,are changed unobviously,while the cut-off frequency and the maximum oscillation frequency are decreased from 220to 171 GHz and from 204 to 154 GHz,respectively.In order to have a detailed insight on the degradation of the RF performance,small-signal models for the In P DHBT before and after substrate transferred are presented and comparably extracted.The extracted results show that the degradation of the RF performance of the device transferred to RF CMOS wafer substrate are mainly caused by the additional introduced substrate parasitics and the increase of the capacitive parasitics induced by the substrate transfer process itself.
文摘A broadband programmable gain amplifier(PGA) with a small gain step and low gain error has been designed in 0.13 m CMOS technology. The PGA was implemented with open-loop architecture to provide wide bandwidth. A two-stage gain control method, which consists of a resistor ladder attenuator and an active fine gain control stage, provides the small gain step. A look-up table based gain control method is introduced in the fine gain control stage to lower the gain error.The proposedPGAshows a decibel-linear variable gainfrom4 to20 dB with a gain step of 0.1 dB and a gain error less than˙0.05 dB. The 3-dB bandwidth and maximum IIP3 are 3.8 GHz and 17 dBm, respectively.
基金Project supported by the National Natural Science Foundation of China(No.61574045)
文摘A fourth-order Gm-C Chebyshev low-pass filter is presented as channel selection filter for reconfigurable multi-mode wireless receivers. Low-noise technologies are proposed in optimizing the noise characteristics of both the Gm cells and the filter topology. A frequency tuning strategy is used by tuning both the transconductance of the Gm cells and the capacitance of the capacitor banks. To achieve accurate cut-off frequencies, an on-chip calibration circuit is presented to compensate for the frequency inaccuracy introduced by process variation. The filter is fabricated in a 0.13 m CMOS process. It exhibits a wide programmable bandwidth from 322.5 k Hz to20 MHz. Measured results show that the filter has low input referred noise of 5.9 n V/(Hz)^(1/2) and high out-of-band IIP3 of 16.2 d Bm. It consumes 4.2 and 9.5 m W from a 1 V power supply at its lowest and highest cut-off frequencies respectively.