A prototype of hybrid neural recording interface has been developed for extracellular neural recording. It consists of a silicon-based plane microelectrode array and a CMOS low noise neural amplifier chip. The neural ...A prototype of hybrid neural recording interface has been developed for extracellular neural recording. It consists of a silicon-based plane microelectrode array and a CMOS low noise neural amplifier chip. The neural amplifier chip is designed and implemented in 0.18 μm N-well CMOS 1P6M technology. The area of the neural preamplifier is only 0.042 mm2 with a gain of 48.3 dB. The input equivalent noise is 4.73 btVrms within pass bands of 4 kHz. To avoid cable tethering for high dense mul- tichannel neural recording interface and make it compact, flip-chip bonding is used to integrate the preamplifier chip and the microelectrode together. The hybrid device measures 3 mm×5.5 mm×330μm, which is convenient for implant or in-vivo neu- ral recording. The hybrid device was testified in in-vivo experiment. Neural signals were recorded from hippocampus region of anesthetized Sprague Dawley rats successfully.展开更多
基金supported in part by the National Natural Science Foundation of China(Grant Nos.61076023,61275200,31070965)the National Basic Research Program of China("973" project)(Grant No.2011CB933203)the National High-Tech Research and Development Program of China("863" Project)(Grant No.2012AA030308)
文摘A prototype of hybrid neural recording interface has been developed for extracellular neural recording. It consists of a silicon-based plane microelectrode array and a CMOS low noise neural amplifier chip. The neural amplifier chip is designed and implemented in 0.18 μm N-well CMOS 1P6M technology. The area of the neural preamplifier is only 0.042 mm2 with a gain of 48.3 dB. The input equivalent noise is 4.73 btVrms within pass bands of 4 kHz. To avoid cable tethering for high dense mul- tichannel neural recording interface and make it compact, flip-chip bonding is used to integrate the preamplifier chip and the microelectrode together. The hybrid device measures 3 mm×5.5 mm×330μm, which is convenient for implant or in-vivo neu- ral recording. The hybrid device was testified in in-vivo experiment. Neural signals were recorded from hippocampus region of anesthetized Sprague Dawley rats successfully.