In order to get atomic smooth rigid disk substrate surface, ultra-fined alumina slurry and nanometer silica slurry are prepared, and two steps chemical-mechanical polishing (CMP) of rigid disk substrate in the two s...In order to get atomic smooth rigid disk substrate surface, ultra-fined alumina slurry and nanometer silica slurry are prepared, and two steps chemical-mechanical polishing (CMP) of rigid disk substrate in the two slurries are studied. The results show that, during the first step CMP in the alumina slurry, a high material removal rate is reached, and the average roughness (Ra) and the average waviness (Wa) of the polished surfaces can be decreased from previous 1.4 nm and 1.6 nm to about 0.6 nm and 0.7 nm, respectively. By using the nanometer silica slurry and optimized polishing process parameters in the second step CMP, the Ra and the Wa of the polished surfaces can be further reduced to 0.038 nm and 0.06 am, respectively. Atom force microscopy (AFM) analysis shows that the final polished surfaces are ultra-smooth without micro-defects.展开更多
In this paper, chemical mechanical planarization (CMP) of amorphous Ge2Sb2Te5 (a-GST) in acidic H2O2 slurry is investigated. It was found that the removal rate of a-GST is strongly dependent on H2O2 concentration ...In this paper, chemical mechanical planarization (CMP) of amorphous Ge2Sb2Te5 (a-GST) in acidic H2O2 slurry is investigated. It was found that the removal rate of a-GST is strongly dependent on H2O2 concentration and gradually increases with the increase in H2O2 concentration, but the static etch rate first increases and then slowly decreases with the increase in H2O2 concentration. To understand the chemical reaction behavior of H2O2 on the a-GST surface, the potentiodynamic polarization curve, surface morphology and cross-section of a-GST immersed in acidic slurry are measured and the results reveal that a-GST exhibits a from active to passive behavior for from low to high concentration of H2O2. Finally, a possible removal mechanism of a-GST in different concentrations of H2O2 in the acidic slurry is described.展开更多
Effects of abrasive concentration on material removal rate CMRR) and surtace quality m the chemical mecnamcal polishing (CMP) of light-emitting diode sapphire substrates are investigated. Experimental results show ...Effects of abrasive concentration on material removal rate CMRR) and surtace quality m the chemical mecnamcal polishing (CMP) of light-emitting diode sapphire substrates are investigated. Experimental results show that the MRR increases linearly with the abrasive concentration, while the rms roughness decreases with the increasing abrasive concentration. In addition, the in situ coefficient of friction (COF) is also conducted during the sapphire polishing process. The results present that COF increases sharply with the abrasive concentration up to 20 wt% and then shows a slight decrease from 20wt% to 40wt%. Temperature is a product of the friction force that is proportional to COF, which is an indicator for the mechanism of the sapphire CMP.展开更多
Chemical mechanical planarization(CMP)has become one of the most critical processes in semiconductor device fabrication to achieve global planarization.To achieve an efficient global planarization for device node dime...Chemical mechanical planarization(CMP)has become one of the most critical processes in semiconductor device fabrication to achieve global planarization.To achieve an efficient global planarization for device node dimensions of less than 32 nm,a comprehensive understanding of the physical,chemical,and tribo-mechanical/chemical action at the interface between the pad and wafer in the presence of a slurry medium is essential.During the CMP process,some issues such as film delamination,scratching,dishing,erosion,and corrosion can generate defects which can adversely affect the yield and reliability.In this article,an overview of material removal mechanism of CMP process,investigation of the scratch formation behavior based on polishing process conditions and consumables,scratch formation mechanism and the scratch inspection tools were extensively reviewed.The advantages of adopting the filtration unit and the jet spraying of water to reduce the scratch formation have been reviewed.The current research trends in the scratch formation,based on modeling perspective were also discussed.展开更多
The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics.Different from the international dominant acid...The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics.Different from the international dominant acidic copper slurry,the copper slurry used in this research adopted the way of alkaline technology based on complexation. According to the passivation property of copper in alkaline conditions,the protection of copper film at the concave position on a copper pattern wafer surface can be achieved without the corrosion inhibitors such as benzotriazole(BTA),by which the problems caused by BTA can be avoided.Through the experiments and theories research,the chemical mechanical kinetics theory of copper removal in alkaline CMP conditions was proposed. Based on the chemical mechanical kinetics theory,the planarization mechanism of alkaline copper slurry was established. In alkaline CMP conditions,the complexation reaction between chelating agent and copper ions needs to break through the reaction barrier.The kinetic energy at the concave position should be lower than the complexation reaction barrier,which is the key to achieve planarization.展开更多
Chemical mechanical planarization(CMP) of amorphous Ge_2Sb_2Te_5(a-GST) is investigated using two typical soft pads(politex REG and AT) in acidic slurry.After CMP,it is found that the removal rate(RR) of a-GST...Chemical mechanical planarization(CMP) of amorphous Ge_2Sb_2Te_5(a-GST) is investigated using two typical soft pads(politex REG and AT) in acidic slurry.After CMP,it is found that the removal rate(RR) of a-GST increases with an increase of runs number for both pads.However,it achieves the higher RR and better surface quality of a-GST for an AT pad.The in-situ sheet resistance(R_s) measure shows the higher R_s of a-GST polishing can be gained after CMP using both pads and the high R_s is beneficial to lower the reset current for the PCM cells. In order to find the root cause of the different RR of a-GST polishing with different pads,the surface morphology and characteristics of both new and used pads are analyzed,it shows that the AT pad has smaller porosity size and more pore counts than that of the REG pad,and thus the AT pad can transport more fresh slurry to the reaction interface between the pad and a-GST,which results in the high RR of a-GST due to enhanced chemical reaction.展开更多
An abrasive free chemical mechanical planarization(AFCMP) of semi-polar(1122) Al N surface has been demonstrated. The effect of slurry p H, polishing pressure, and platen velocity on the material removal rate(MRR...An abrasive free chemical mechanical planarization(AFCMP) of semi-polar(1122) Al N surface has been demonstrated. The effect of slurry p H, polishing pressure, and platen velocity on the material removal rate(MRR) and surface quality(RMS roughness) have been studied. The effect of polishing pressure on the AFCMP of the(1122) Al N surface has been compared with that of the(1122) Al Ga N surface. The maximum MRR has been found to be 562 nm/h for the semi-polar(1122) Al N surface, under the experimental conditions of 38 k Pa pressure,90 rpm platen velocity, 30 rpm carrier velocity, slurry p H 3 and 0.4 M oxidizer concentration. The best root mean square(RMS) surface roughness of 1.2 nm and 0.7 nm, over a large scanning area of 0.70×0.96 mm^2, has been achieved on AFCMP processed semi-polar(1122) AlN and(AlGaN) surfaces using optimized slurry chemistry and processing parameters.展开更多
The electrochemical behavior of silicon wafer in alkaline slurry with nano-sized CeO2 abrasive was investigated.The variations of corrosion potential(φcorr)and corrosion current density(Jcorr)of the P-type(100)silico...The electrochemical behavior of silicon wafer in alkaline slurry with nano-sized CeO2 abrasive was investigated.The variations of corrosion potential(φcorr)and corrosion current density(Jcorr)of the P-type(100)silicon wafer with the slurry pH value and the concentration of abrasive CeO2 were studied by polarization curve technologies.The dependence of the polishing rate on the pH and the concentration of CeO2 in slurries during chemical mechanical polishing(CMP)were also studied.It is discovered that there is a large change of φcorr and Jcorr when slurry pH is altered and the Jcorr reaches the maximum(1.306 μA/cm2)at pH 10.5 when the material removal rate(MRR)comes to the fastest value.The Jcorr increases gradually from 0.994 μA/cm2 with 1% CeO2 to 1.304 μA/cm2 with 3% CeO2 and reaches a plateau with the further increase of CeO2 concentration.There is a considerable MRR in the slurry with 3% CeO2 at pH 10.5.The coherence between Jcorr and MRR elucidates that the research on the electrochemical behavior of silicon wafers in the alkaline slurry could offer theoretic guidance on silicon polishing rate and ensure to adjust optimal components of slurry.展开更多
The replacement metal gate(RMG) defectivity performance control is very challenging in high-k metal gate(HKMG) chemical mechanical polishing(CMP). In this study, three major defect types, including fall-on parti...The replacement metal gate(RMG) defectivity performance control is very challenging in high-k metal gate(HKMG) chemical mechanical polishing(CMP). In this study, three major defect types, including fall-on particles, micro-scratch and corrosion have been investigated. The research studied the effects of polishing pad,pressure, rotating speed, flow rate and post-CMP cleaning on the three kinds of defect, which finally eliminated the defects and achieved good surface morphology. This study will provide an important reference value for the future research of aluminum metal gate CMP.展开更多
The roughness of the contact surface exerts a vital role in rubbing.It is still a significant challenge to understand the microscopic contact of the rough surface at the atomic level.Herein,the rough surface with a sp...The roughness of the contact surface exerts a vital role in rubbing.It is still a significant challenge to understand the microscopic contact of the rough surface at the atomic level.Herein,the rough surface with a special root mean square(RMS)value is constructed by multivariate Weierstrass–Mandelbrot(W–M)function and the rubbing process during that the chemical mechanical polishing(CMP)process of diamond is mimicked utilizing the reactive force field molecular dynamics(ReaxFF MD)simulation.It is found that the contact area A/A0 is positively related with the load,and the friction force F depends on the number of interfacial bridge bonds.Increasing the surface roughness will increase the friction force and friction coefficient.The model with low roughness and high lubrication has less friction force,and the presence of polishing liquid molecules can decrease the friction force and friction coefficient.The RMS value and the degree of damage show a functional relationship with the applied load and lubrication,i.e.,the RMS value decreases more under larger load and higher lubrication,and the diamond substrate occurs severer damage under larger load and lower lubrication.This work will generate fresh insight into the understanding of the microscopic contact of the rough surface at the atomic level.展开更多
基金This project is supported by National Basic Research Program of China (973 Program, N0.2003CB716201)National Natural Science Foundation of China (No.50575131)Science Foundation of Shanghai Municipal Commission of Science and Technology, China(No.0452nm013).
文摘In order to get atomic smooth rigid disk substrate surface, ultra-fined alumina slurry and nanometer silica slurry are prepared, and two steps chemical-mechanical polishing (CMP) of rigid disk substrate in the two slurries are studied. The results show that, during the first step CMP in the alumina slurry, a high material removal rate is reached, and the average roughness (Ra) and the average waviness (Wa) of the polished surfaces can be decreased from previous 1.4 nm and 1.6 nm to about 0.6 nm and 0.7 nm, respectively. By using the nanometer silica slurry and optimized polishing process parameters in the second step CMP, the Ra and the Wa of the polished surfaces can be further reduced to 0.038 nm and 0.06 am, respectively. Atom force microscopy (AFM) analysis shows that the final polished surfaces are ultra-smooth without micro-defects.
基金Project supported by the National Basic Research Program of China (Grant Nos. 2010CB934300, 2011CBA00607, and 2011CB9328004)the National Integrate Circuit Research Program of China (Grant No. 2009ZX02023-003)+2 种基金the National Natural Science Foundation of China (Grant Nos. 60906004, 60906003,61006087, 61076121, 61176122, and 61106001)the Science and Technology Council of Shanghai, China (Grant Nos. 11DZ2261000 and 11QA1407800)the Chinese Academy of Sciences (Grant No. 20110490761)
文摘In this paper, chemical mechanical planarization (CMP) of amorphous Ge2Sb2Te5 (a-GST) in acidic H2O2 slurry is investigated. It was found that the removal rate of a-GST is strongly dependent on H2O2 concentration and gradually increases with the increase in H2O2 concentration, but the static etch rate first increases and then slowly decreases with the increase in H2O2 concentration. To understand the chemical reaction behavior of H2O2 on the a-GST surface, the potentiodynamic polarization curve, surface morphology and cross-section of a-GST immersed in acidic slurry are measured and the results reveal that a-GST exhibits a from active to passive behavior for from low to high concentration of H2O2. Finally, a possible removal mechanism of a-GST in different concentrations of H2O2 in the acidic slurry is described.
基金Supported by the National Major Scientific and Technological Special Project during the Twelfth Five-year Plan Period under Grant No 2011ZX02704the National Natural Science Foundation of China under Grant No 51205387the Science and Technology Commission of Shanghai under Grant Nos llnm0500300 and 14XD1425300
文摘Effects of abrasive concentration on material removal rate CMRR) and surtace quality m the chemical mecnamcal polishing (CMP) of light-emitting diode sapphire substrates are investigated. Experimental results show that the MRR increases linearly with the abrasive concentration, while the rms roughness decreases with the increasing abrasive concentration. In addition, the in situ coefficient of friction (COF) is also conducted during the sapphire polishing process. The results present that COF increases sharply with the abrasive concentration up to 20 wt% and then shows a slight decrease from 20wt% to 40wt%. Temperature is a product of the friction force that is proportional to COF, which is an indicator for the mechanism of the sapphire CMP.
文摘Chemical mechanical planarization(CMP)has become one of the most critical processes in semiconductor device fabrication to achieve global planarization.To achieve an efficient global planarization for device node dimensions of less than 32 nm,a comprehensive understanding of the physical,chemical,and tribo-mechanical/chemical action at the interface between the pad and wafer in the presence of a slurry medium is essential.During the CMP process,some issues such as film delamination,scratching,dishing,erosion,and corrosion can generate defects which can adversely affect the yield and reliability.In this article,an overview of material removal mechanism of CMP process,investigation of the scratch formation behavior based on polishing process conditions and consumables,scratch formation mechanism and the scratch inspection tools were extensively reviewed.The advantages of adopting the filtration unit and the jet spraying of water to reduce the scratch formation have been reviewed.The current research trends in the scratch formation,based on modeling perspective were also discussed.
基金supported by the Special Project Items No.2 in National Long-term Technology Development Plan,China(No.2009ZX02308)
文摘The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics.Different from the international dominant acidic copper slurry,the copper slurry used in this research adopted the way of alkaline technology based on complexation. According to the passivation property of copper in alkaline conditions,the protection of copper film at the concave position on a copper pattern wafer surface can be achieved without the corrosion inhibitors such as benzotriazole(BTA),by which the problems caused by BTA can be avoided.Through the experiments and theories research,the chemical mechanical kinetics theory of copper removal in alkaline CMP conditions was proposed. Based on the chemical mechanical kinetics theory,the planarization mechanism of alkaline copper slurry was established. In alkaline CMP conditions,the complexation reaction between chelating agent and copper ions needs to break through the reaction barrier.The kinetic energy at the concave position should be lower than the complexation reaction barrier,which is the key to achieve planarization.
基金Project supported by the National Key Basic Research Program of China(Nos.2010CB934300,2011CBA00607,2011CB9328004)the National Integrated Circuit Research Program of China(No.2009ZX02023-003)+2 种基金the National Natural Science Foundation of China(Nos. 60906004,60906003,61006087,61076121,61176122,61106001)the Science and Technology Council of Shanghai(Nos.11DZ2261000,11OA1407800.12nm0503701)the Chinese Academy of Sciences(No.20110490761)
文摘Chemical mechanical planarization(CMP) of amorphous Ge_2Sb_2Te_5(a-GST) is investigated using two typical soft pads(politex REG and AT) in acidic slurry.After CMP,it is found that the removal rate(RR) of a-GST increases with an increase of runs number for both pads.However,it achieves the higher RR and better surface quality of a-GST for an AT pad.The in-situ sheet resistance(R_s) measure shows the higher R_s of a-GST polishing can be gained after CMP using both pads and the high R_s is beneficial to lower the reset current for the PCM cells. In order to find the root cause of the different RR of a-GST polishing with different pads,the surface morphology and characteristics of both new and used pads are analyzed,it shows that the AT pad has smaller porosity size and more pore counts than that of the REG pad,and thus the AT pad can transport more fresh slurry to the reaction interface between the pad and a-GST,which results in the high RR of a-GST due to enhanced chemical reaction.
基金financial support from the Department of Science and Technology(DST),Government of India(No,SR/S2/Cmp-0009/2011)partial support from the Board of Research in Nuclear Sciences(BRNS),Department of Atomic Energy(DAE),Government of India(No.-34/14/43/2014-BRNS)with ATC
文摘An abrasive free chemical mechanical planarization(AFCMP) of semi-polar(1122) Al N surface has been demonstrated. The effect of slurry p H, polishing pressure, and platen velocity on the material removal rate(MRR) and surface quality(RMS roughness) have been studied. The effect of polishing pressure on the AFCMP of the(1122) Al N surface has been compared with that of the(1122) Al Ga N surface. The maximum MRR has been found to be 562 nm/h for the semi-polar(1122) Al N surface, under the experimental conditions of 38 k Pa pressure,90 rpm platen velocity, 30 rpm carrier velocity, slurry p H 3 and 0.4 M oxidizer concentration. The best root mean square(RMS) surface roughness of 1.2 nm and 0.7 nm, over a large scanning area of 0.70×0.96 mm^2, has been achieved on AFCMP processed semi-polar(1122) AlN and(AlGaN) surfaces using optimized slurry chemistry and processing parameters.
基金Project(2005DFBA028)supported by the International Cooperation of Science and Technology Ministry of ChinaProject(LA07023)supported by the National Undergraduate Innovative Experiment Plan
文摘The electrochemical behavior of silicon wafer in alkaline slurry with nano-sized CeO2 abrasive was investigated.The variations of corrosion potential(φcorr)and corrosion current density(Jcorr)of the P-type(100)silicon wafer with the slurry pH value and the concentration of abrasive CeO2 were studied by polarization curve technologies.The dependence of the polishing rate on the pH and the concentration of CeO2 in slurries during chemical mechanical polishing(CMP)were also studied.It is discovered that there is a large change of φcorr and Jcorr when slurry pH is altered and the Jcorr reaches the maximum(1.306 μA/cm2)at pH 10.5 when the material removal rate(MRR)comes to the fastest value.The Jcorr increases gradually from 0.994 μA/cm2 with 1% CeO2 to 1.304 μA/cm2 with 3% CeO2 and reaches a plateau with the further increase of CeO2 concentration.There is a considerable MRR in the slurry with 3% CeO2 at pH 10.5.The coherence between Jcorr and MRR elucidates that the research on the electrochemical behavior of silicon wafers in the alkaline slurry could offer theoretic guidance on silicon polishing rate and ensure to adjust optimal components of slurry.
基金Project supported by the Major National Science and Technology Special Projects(No.2009ZX02308)the Natural Science Foundation for the Youth of Hebei Province(Nos.F2012202094,F2015202267)the Outstanding Youth Science and Technology Innovation Fund of Hebei University of Technology(No.2013010)
文摘The replacement metal gate(RMG) defectivity performance control is very challenging in high-k metal gate(HKMG) chemical mechanical polishing(CMP). In this study, three major defect types, including fall-on particles, micro-scratch and corrosion have been investigated. The research studied the effects of polishing pad,pressure, rotating speed, flow rate and post-CMP cleaning on the three kinds of defect, which finally eliminated the defects and achieved good surface morphology. This study will provide an important reference value for the future research of aluminum metal gate CMP.
基金the National Key R&D Program of China(2022YFB3404304)the National Natural Science Foundation of China(No.5217052183).
文摘The roughness of the contact surface exerts a vital role in rubbing.It is still a significant challenge to understand the microscopic contact of the rough surface at the atomic level.Herein,the rough surface with a special root mean square(RMS)value is constructed by multivariate Weierstrass–Mandelbrot(W–M)function and the rubbing process during that the chemical mechanical polishing(CMP)process of diamond is mimicked utilizing the reactive force field molecular dynamics(ReaxFF MD)simulation.It is found that the contact area A/A0 is positively related with the load,and the friction force F depends on the number of interfacial bridge bonds.Increasing the surface roughness will increase the friction force and friction coefficient.The model with low roughness and high lubrication has less friction force,and the presence of polishing liquid molecules can decrease the friction force and friction coefficient.The RMS value and the degree of damage show a functional relationship with the applied load and lubrication,i.e.,the RMS value decreases more under larger load and higher lubrication,and the diamond substrate occurs severer damage under larger load and lower lubrication.This work will generate fresh insight into the understanding of the microscopic contact of the rough surface at the atomic level.