期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
非饱和土壤水流问题的CN有限元格式 被引量:1
1
作者 罗振东 《计算数学》 CSCD 北大核心 2014年第4期355-362,共8页
首先给出二维非饱和土壤水流问题基于Crank-Nicolson(CN)方法的具有时间二阶精度的半离散化格式,然后直接从CN时间半离散化格式出发,建立具有时间二阶精度的全离散化CN有限元格式,并给出误差估计,最后用数值例子说明全离散化CN有限元格... 首先给出二维非饱和土壤水流问题基于Crank-Nicolson(CN)方法的具有时间二阶精度的半离散化格式,然后直接从CN时间半离散化格式出发,建立具有时间二阶精度的全离散化CN有限元格式,并给出误差估计,最后用数值例子说明全离散化CN有限元格式的优越性.这种方法可以绕开关于空间变量的半离散化格式的讨论,提高时间离散的精度,极大地减少时间方向的迭代步,从而减少实际计算中截断误差的积累,提高计算精度和计算效率. 展开更多
关键词 非饱和土壤水流问题 Crank—Nicolson方法 全离散化cn有限元格式
原文传递
二维土壤溶质输运问题的CN有限元法
2
作者 腾飞 邓从政 罗振东 《数学的实践与认识》 北大核心 2015年第9期169-175,共7页
首先给出二维土壤溶质输运问题时间二阶精度的Crank-Nicolson(CN)时间半离散化格式,然后直接从CN时间半离散化格式出发,建立具有时间二阶精度的全离散化CN有限元格式,并给出CN有限元解的误差分析,最后用数值例子验证全离散化CN有限元格... 首先给出二维土壤溶质输运问题时间二阶精度的Crank-Nicolson(CN)时间半离散化格式,然后直接从CN时间半离散化格式出发,建立具有时间二阶精度的全离散化CN有限元格式,并给出CN有限元解的误差分析,最后用数值例子验证全离散化CN有限元格式的优越性.这种方法提高了时间离散的精度,并极大地减少时间方向的迭代步,从而减少实际计算中截断误差的积累,提高计算精度和计算效率.而且方法绕开对空间变量半离散化有限元格式的讨论,使得理论研究更简便. 展开更多
关键词 土壤溶质输运问题 cn有限元格式 误差估计
原文传递
二维土壤溶质输运方程基于POD方法的降阶CN有限元外推算法 被引量:2
3
作者 腾飞 罗振东 《数学进展》 CSCD 北大核心 2015年第3期459-470,共12页
首先给出二维土壤溶质输运方程时间二阶精度的Crank-Nicolson(CN)时间半离散化格式和时间二阶精度的全离散化CN有限元格式及其误差分析.然后利用特征投影分解(proper orthogonal decomposition,简记为POD)方法对二维土壤溶质输运方程的... 首先给出二维土壤溶质输运方程时间二阶精度的Crank-Nicolson(CN)时间半离散化格式和时间二阶精度的全离散化CN有限元格式及其误差分析.然后利用特征投影分解(proper orthogonal decomposition,简记为POD)方法对二维土壤溶质输运方程的经典CN有限元格式做降阶处理,建立一种具有足够高精度、自由度很少的降阶CN有限元外推格式,并给出这种降阶CN有限元解的误差估计和外推算法的实现.最后用数值例子说明数值结果与理论结果是相吻合的. 展开更多
关键词 土壤溶质输运方程 特征投影分解 降阶cn有限元外推格式
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部