Building cyber-physical system(CPS) models of machine tools is a key technology for intelligent manufacturing. The massive electronic data from a computer numerical control(CNC) system during the work processes of a C...Building cyber-physical system(CPS) models of machine tools is a key technology for intelligent manufacturing. The massive electronic data from a computer numerical control(CNC) system during the work processes of a CNC machine tool is the main source of the big data on which a CPS model is established. In this work-process model, a method based on instruction domain is applied to analyze the electronic big data, and a quantitative description of the numerical control(NC) processes is built according to the G code of the processes. Utilizing the instruction domain, a work-process CPS model is established on the basis of the accurate, real-time mapping of the manufacturing tasks, resources, and status of the CNC machine tool. Using such models, case studies are conducted on intelligent-machining applications, such as the optimization of NC processing parameters and the health assurance of CNC machine tools.展开更多
This paper describes the innovation schemes of the interface of a CNC machine which cannot communicate with a computer by a Direct Numerical Control(DNC)interface and the functions of a DNC interface system.One archit...This paper describes the innovation schemes of the interface of a CNC machine which cannot communicate with a computer by a Direct Numerical Control(DNC)interface and the functions of a DNC interface system.One architecture of hardware and software of a practi- cal single-chip computer based on DNC interface system developed by the authors is given. Without any change of the original hardware and software,this DNC interface system has been used to innovate the CNC machine's interface to implement the direct communication between a computer and a CNC machine and to achieve no tape transmission of a part program and ma- chine parameters.It has been demonstrated that this DNC interface system has certain practical values in improving the reliability,efficiency and production management of CNC/NC machine.展开更多
Uncertain friction is a key factor that influences the accuracy of servo system in CNC machine.In this paper,based on the principle of Active Disturbance Rejection Control(ADRC),a control method is proposed,where both...Uncertain friction is a key factor that influences the accuracy of servo system in CNC machine.In this paper,based on the principle of Active Disturbance Rejection Control(ADRC),a control method is proposed,where both the extended state observer(ESO) and the reduced order extended state observer(RESO) are used to estimate and compensate for the disturbance.The authors prove that both approaches ensure high accuracy in theory,and give the criterion for parameters selection.The authors also prove that ADRC with RESO performs better than that with ESO both in disturbance estimation and tracking error.The simulation results on CNC machine show the effectiveness and feasibility of our control approaches.展开更多
Magnetic-liquid suspension guide-way system( MLSGS) is coupled supported by permanent magnetic suspension and hydrostatic bearing. The structure and bearing mechanism of MLSGS of heavy computer numerical control( CNC)...Magnetic-liquid suspension guide-way system( MLSGS) is coupled supported by permanent magnetic suspension and hydrostatic bearing. The structure and bearing mechanism of MLSGS of heavy computer numerical control( CNC) machine tools are introduced and the mathematical expression of bearing force of bearing unit is derived and it can be broken apart into six parts which sustains directly the coordinate components of broad external load,where the air gap of permanent magnet and hydrostatic oil film can be simplified as elastic supports,the compatibility equations of deformations for oil films and air gap are presented,and then the bearing capacity calculation of the bearing unit is transformed into a determinate problem. Considering the guide-way as a rigid body,the mathematics expression between the bearing unit's bearing force and the oil film variation is linearized,and the oil pocket's bearing capacity which bears different components of the external load is calculated separately. The six components of the bearing unit are added up,and the final general mathematics expression is derived. The proposed research offers a general simple method for calculating the bearing capacity of MLSGS with complicate constraint,which can be mastered simply by engineering designer and can improve design efficiency and accuracy.展开更多
As the foundation of an industrialized country nowadays,machine tools industry is regarded as the engine of industrial development of a country.The developed countries,such as USA,Germany and Japan,have widely deploye...As the foundation of an industrialized country nowadays,machine tools industry is regarded as the engine of industrial development of a country.The developed countries,such as USA,Germany and Japan,have widely deployed the technology of using the patent in order to keep their strength in various fields.This research examins the CNC machine tools industry in the world by using the patent analysis method.It first gives an overview about the world patent application in CNC machine tools industry from 1963 to 2010 and divides the development of the industry into five stages.It also lists the patent application of the world top 20 countries,where the top 5 countries are compared.The patents of the world top 10 companies of machine tools manufacturers are mapped according to the international patent classification(IPC),and the future trends of world machine tools industry are discussed.Finally conclusions and suggestions are presented.展开更多
In this paper, design and fabrication of a commemorative plaque are described and presented. The plaque was fabricated to honour the memory of the 14 women massacred at L'Ecole Polytechnique in Montreal. This plaque ...In this paper, design and fabrication of a commemorative plaque are described and presented. The plaque was fabricated to honour the memory of the 14 women massacred at L'Ecole Polytechnique in Montreal. This plaque is the result of a project partnership between the Faculties of Engineering and Fine Arts, and was sponsored by the Office of the Vice-President Academic and Provost. An art design was selected through a contest coordinated by the Visual Arts Departmment. The selected art design was then turned over to the Mechanical Engineering Department to be converted to a 3-dimensional (3D) solid model and then eventually fabricated on a computer numerical control (CNC) milling machine. The fabricated plaque was unveiled during the December 2010 Memorial event at UVic.展开更多
In this work, the cutting forces by end milling operation are analyzed. Therefore, the main parameters of cutting force as cutting speed, feed rate and depth of cut also are investigated in our case. The cutting force...In this work, the cutting forces by end milling operation are analyzed. Therefore, the main parameters of cutting force as cutting speed, feed rate and depth of cut also are investigated in our case. The cutting force is modelled and analyzed into mathematical Wolfram simulations in order to compare the results and in the same time achieve the best solutions. Theoretical results are carried out by using the regression method that required fulfilling the critter by Fisher. The number of experiment, measurements and results of cutting force are presented in 2D as well as 3D. In order to verify the accuracy of the 2D diagram, the results for our case is used both two way such as experimental and theoretical method as well as results are compared. In other hands, these results indicate directly that the optimized parameters are capable of machining the workpiece. The obtained measurement results are compared with theoretical methods in Wolfram software.展开更多
The machining accuracy of computer numerical control machine tools has always been a focus of the manufacturing industry.Among all errors,thermal error affects the machining accuracy considerably.Because of the signif...The machining accuracy of computer numerical control machine tools has always been a focus of the manufacturing industry.Among all errors,thermal error affects the machining accuracy considerably.Because of the significant impact of Industry 4.0 on machine tools,existing thermal error modeling methods have encountered unprecedented challenges in terms of model complexity and capability of dealing with a large number of time series data.A thermal error modeling method is proposed based on bidirectional long short-term memory(BiLSTM)deep learning,which has good learning ability and a strong capability to handle a large group of dynamic data.A four-layer model framework that includes BiLSTM,a feedforward neural network,and the max pooling is constructed.An elaborately designed algorithm is proposed for better and faster model training.The window length of the input sequence is selected based on the phase space reconstruction of the time series.The model prediction accuracy and model robustness were verified experimentally by three validation tests in which thermal errors predicted by the proposed model were compensated for real workpiece cutting.The average depth variation of the workpiece was reduced from approximately 50μm to less than 2μm after compensation.The reduction in maximum depth variation was more than 85%.The proposed model was proved to be feasible and effective for improving machining accuracy significantly.展开更多
The core of computer numerical control(CNC) machine tool is the electrical system which controls and coordinates every part of CNC machine tool to complete processing tasks, so it is of great significance to strengthe...The core of computer numerical control(CNC) machine tool is the electrical system which controls and coordinates every part of CNC machine tool to complete processing tasks, so it is of great significance to strengthen the reliability of the electrical system. However, the electrical system is very complex due to many uncertain factors and dynamic stochastic characteristics when failure occurs. Therefore, the traditional fault tree analysis(FTA) method is not applicable. Bayesian network(BN) not only has a unique advantage to analyze nodes with multiply states in reliability analysis for complex systems, but also can solve the state explosion problem properly caused by Markov model when dealing with dynamic fault tree(DFT). In addition, the forward causal reasoning of BN can get the conditional probability distribution of the system under considering the uncertainty;the backward diagnosis reasoning of BN can recognize the weak links in system, so it is valuable for improving the system reliability.展开更多
Feedrate scheduling in computer numerical control(CNC)machining is of great importance to fully develop the capabilities of machine tools while maintaining the motion stability of each actuator.Smooth and time-optimal...Feedrate scheduling in computer numerical control(CNC)machining is of great importance to fully develop the capabilities of machine tools while maintaining the motion stability of each actuator.Smooth and time-optimal feedrate scheduling plays a critical role in improving the machining efficiency and precision of complex surfaces considering the irregular curvature characteristics of tool paths and the limited drive capacities of machine tools.This study develops a general feedrate scheduling method for non-uniform rational B-splines(NURBS)tool paths in CNC machining aiming at minimizing the total machining time without sacrificing the smoothness of feed motion.The feedrate profile is represented by a B-spline curve to flexibly adapt to the frequent acceleration and deceleration requirements of machining along complex tool paths.The time-optimal B-spline feedrate is produced by continuously increasing the control points sequentially from zero positions in the bidirectional scanning and sampling processes.The required number of knots for the time-optimal B-spline feedrate can be determined using a progressive knot insertion method.To improve the computational efficiency,the B-spline feedrate profile is divided into a series of independent segments and the computation in each segment can be performed concurrently.The proposed feedrate scheduling method is capable of dealing with not only the geometry constraints but also high-order drive constraints for any complex tool path with little computational overhead.Simulations and machining experiments are conducted to verify the effectiveness and superiorities of the proposed method.展开更多
High product quality is one of key demands of customers in the field of manufacturing such as computer numerical control(CNC)machining.Quality monitoring and prediction is of great importance to assure high-quality or...High product quality is one of key demands of customers in the field of manufacturing such as computer numerical control(CNC)machining.Quality monitoring and prediction is of great importance to assure high-quality or zero defect production.In this work,we consider roughness parameter Ra,profile deviation Pt and roundness deviation RONt of the machined products by a lathe.Intrinsically,these three parameters are much related to the machine spindle parameters of preload,temperature,and rotations per minute(RPMs),while in this paper,spindle vibration and cutting force are taken as inputs and used to predict the three quality parameters.Power spectral density(PSD)based feature extraction,the method to generate compact and well-correlated features,is proposed in details in this paper.Using the efficient features,neural network based machine learning technique turns out to be able to result in high prediction accuracy with R2 score of 0.92 for roughness,0.86 for profile,and 0.95 for roundness.展开更多
A binary decision diagram(BDD) is a data structure that is used to represent a Boolean function.Converting fault tree into BDD can effectively simplify counting processes and improve the accuracy and effectiveness of ...A binary decision diagram(BDD) is a data structure that is used to represent a Boolean function.Converting fault tree into BDD can effectively simplify counting processes and improve the accuracy and effectiveness of the results. However, due to various types of uncertainties in reliability data, we cannot obtain precise failure probabilities. In order to accurately quantify the certainties and obtain much more reliable results, we use BDD method based on fuzzy set theory for reliability quantitative analysis. In this regard, we take W-axis feeding system of heavy-duty computer numerical control(CNC) machine as a project example and adopt fuzzy BDD quantitative analysis method to analyze its reliability. The analysis results(aided by computer calculation)illustrate the effectiveness of the method proposed in this paper.展开更多
基金support of the studies is from the National Major Scientific and Technological Special Project for "Development and comprehensive verification of complete products of open high-end CNC system, servo device and motor" (2012ZX04001012)
文摘Building cyber-physical system(CPS) models of machine tools is a key technology for intelligent manufacturing. The massive electronic data from a computer numerical control(CNC) system during the work processes of a CNC machine tool is the main source of the big data on which a CPS model is established. In this work-process model, a method based on instruction domain is applied to analyze the electronic big data, and a quantitative description of the numerical control(NC) processes is built according to the G code of the processes. Utilizing the instruction domain, a work-process CPS model is established on the basis of the accurate, real-time mapping of the manufacturing tasks, resources, and status of the CNC machine tool. Using such models, case studies are conducted on intelligent-machining applications, such as the optimization of NC processing parameters and the health assurance of CNC machine tools.
文摘This paper describes the innovation schemes of the interface of a CNC machine which cannot communicate with a computer by a Direct Numerical Control(DNC)interface and the functions of a DNC interface system.One architecture of hardware and software of a practi- cal single-chip computer based on DNC interface system developed by the authors is given. Without any change of the original hardware and software,this DNC interface system has been used to innovate the CNC machine's interface to implement the direct communication between a computer and a CNC machine and to achieve no tape transmission of a part program and ma- chine parameters.It has been demonstrated that this DNC interface system has certain practical values in improving the reliability,efficiency and production management of CNC/NC machine.
基金partially supported by the National Key Basic Research Project of China under Grant No.2011CB302400the National Basic Research Program of China under Grant No.2014CB845303the National Center for Mathematics and Interdisciplinary Sciences,Chinese Academy of Sciences
文摘Uncertain friction is a key factor that influences the accuracy of servo system in CNC machine.In this paper,based on the principle of Active Disturbance Rejection Control(ADRC),a control method is proposed,where both the extended state observer(ESO) and the reduced order extended state observer(RESO) are used to estimate and compensate for the disturbance.The authors prove that both approaches ensure high accuracy in theory,and give the criterion for parameters selection.The authors also prove that ADRC with RESO performs better than that with ESO both in disturbance estimation and tracking error.The simulation results on CNC machine show the effectiveness and feasibility of our control approaches.
基金Supported by the National Natural Science Foundation of China(No.51705445)the Natural Science Foundation of Hebei Province(No.E2016203324)the Provincial and Ministerial Level Scientific Research Institutions Open Fund of Civil Aviation University of China
文摘Magnetic-liquid suspension guide-way system( MLSGS) is coupled supported by permanent magnetic suspension and hydrostatic bearing. The structure and bearing mechanism of MLSGS of heavy computer numerical control( CNC) machine tools are introduced and the mathematical expression of bearing force of bearing unit is derived and it can be broken apart into six parts which sustains directly the coordinate components of broad external load,where the air gap of permanent magnet and hydrostatic oil film can be simplified as elastic supports,the compatibility equations of deformations for oil films and air gap are presented,and then the bearing capacity calculation of the bearing unit is transformed into a determinate problem. Considering the guide-way as a rigid body,the mathematics expression between the bearing unit's bearing force and the oil film variation is linearized,and the oil pocket's bearing capacity which bears different components of the external load is calculated separately. The six components of the bearing unit are added up,and the final general mathematics expression is derived. The proposed research offers a general simple method for calculating the bearing capacity of MLSGS with complicate constraint,which can be mastered simply by engineering designer and can improve design efficiency and accuracy.
基金Supported by Scientific Monitoring and Key Areas in-Depth Investigation and Research(No.ZD2012-4-2)Special Project of Scientific and Technological Basic Works(No.2009FY241000)Science and Technology Major Specific Project Core Electronic Elements,High-General Chips and Basic Software(No.2013XM01)
文摘As the foundation of an industrialized country nowadays,machine tools industry is regarded as the engine of industrial development of a country.The developed countries,such as USA,Germany and Japan,have widely deployed the technology of using the patent in order to keep their strength in various fields.This research examins the CNC machine tools industry in the world by using the patent analysis method.It first gives an overview about the world patent application in CNC machine tools industry from 1963 to 2010 and divides the development of the industry into five stages.It also lists the patent application of the world top 20 countries,where the top 5 countries are compared.The patents of the world top 10 companies of machine tools manufacturers are mapped according to the international patent classification(IPC),and the future trends of world machine tools industry are discussed.Finally conclusions and suggestions are presented.
文摘In this paper, design and fabrication of a commemorative plaque are described and presented. The plaque was fabricated to honour the memory of the 14 women massacred at L'Ecole Polytechnique in Montreal. This plaque is the result of a project partnership between the Faculties of Engineering and Fine Arts, and was sponsored by the Office of the Vice-President Academic and Provost. An art design was selected through a contest coordinated by the Visual Arts Departmment. The selected art design was then turned over to the Mechanical Engineering Department to be converted to a 3-dimensional (3D) solid model and then eventually fabricated on a computer numerical control (CNC) milling machine. The fabricated plaque was unveiled during the December 2010 Memorial event at UVic.
文摘In this work, the cutting forces by end milling operation are analyzed. Therefore, the main parameters of cutting force as cutting speed, feed rate and depth of cut also are investigated in our case. The cutting force is modelled and analyzed into mathematical Wolfram simulations in order to compare the results and in the same time achieve the best solutions. Theoretical results are carried out by using the regression method that required fulfilling the critter by Fisher. The number of experiment, measurements and results of cutting force are presented in 2D as well as 3D. In order to verify the accuracy of the 2D diagram, the results for our case is used both two way such as experimental and theoretical method as well as results are compared. In other hands, these results indicate directly that the optimized parameters are capable of machining the workpiece. The obtained measurement results are compared with theoretical methods in Wolfram software.
基金sponsored by the National Natural Science Foundation of Major Special Instruments(Grant No.51527806)the National Natural Science Foundation Projects of the People’s Republic of China(Grant No.51975372).
文摘The machining accuracy of computer numerical control machine tools has always been a focus of the manufacturing industry.Among all errors,thermal error affects the machining accuracy considerably.Because of the significant impact of Industry 4.0 on machine tools,existing thermal error modeling methods have encountered unprecedented challenges in terms of model complexity and capability of dealing with a large number of time series data.A thermal error modeling method is proposed based on bidirectional long short-term memory(BiLSTM)deep learning,which has good learning ability and a strong capability to handle a large group of dynamic data.A four-layer model framework that includes BiLSTM,a feedforward neural network,and the max pooling is constructed.An elaborately designed algorithm is proposed for better and faster model training.The window length of the input sequence is selected based on the phase space reconstruction of the time series.The model prediction accuracy and model robustness were verified experimentally by three validation tests in which thermal errors predicted by the proposed model were compensated for real workpiece cutting.The average depth variation of the workpiece was reduced from approximately 50μm to less than 2μm after compensation.The reduction in maximum depth variation was more than 85%.The proposed model was proved to be feasible and effective for improving machining accuracy significantly.
基金the National Science and Technology Major Project of China(No.2014ZX04014-011)
文摘The core of computer numerical control(CNC) machine tool is the electrical system which controls and coordinates every part of CNC machine tool to complete processing tasks, so it is of great significance to strengthen the reliability of the electrical system. However, the electrical system is very complex due to many uncertain factors and dynamic stochastic characteristics when failure occurs. Therefore, the traditional fault tree analysis(FTA) method is not applicable. Bayesian network(BN) not only has a unique advantage to analyze nodes with multiply states in reliability analysis for complex systems, but also can solve the state explosion problem properly caused by Markov model when dealing with dynamic fault tree(DFT). In addition, the forward causal reasoning of BN can get the conditional probability distribution of the system under considering the uncertainty;the backward diagnosis reasoning of BN can recognize the weak links in system, so it is valuable for improving the system reliability.
基金The authors would like to thank the finical support from Scientific Research Projects of Jilin Provincial Department of Education(Grant No.JJKH20200104KJ)National Natural Science Foundation of China(Grant No.51975392).
文摘Feedrate scheduling in computer numerical control(CNC)machining is of great importance to fully develop the capabilities of machine tools while maintaining the motion stability of each actuator.Smooth and time-optimal feedrate scheduling plays a critical role in improving the machining efficiency and precision of complex surfaces considering the irregular curvature characteristics of tool paths and the limited drive capacities of machine tools.This study develops a general feedrate scheduling method for non-uniform rational B-splines(NURBS)tool paths in CNC machining aiming at minimizing the total machining time without sacrificing the smoothness of feed motion.The feedrate profile is represented by a B-spline curve to flexibly adapt to the frequent acceleration and deceleration requirements of machining along complex tool paths.The time-optimal B-spline feedrate is produced by continuously increasing the control points sequentially from zero positions in the bidirectional scanning and sampling processes.The required number of knots for the time-optimal B-spline feedrate can be determined using a progressive knot insertion method.To improve the computational efficiency,the B-spline feedrate profile is divided into a series of independent segments and the computation in each segment can be performed concurrently.The proposed feedrate scheduling method is capable of dealing with not only the geometry constraints but also high-order drive constraints for any complex tool path with little computational overhead.Simulations and machining experiments are conducted to verify the effectiveness and superiorities of the proposed method.
文摘High product quality is one of key demands of customers in the field of manufacturing such as computer numerical control(CNC)machining.Quality monitoring and prediction is of great importance to assure high-quality or zero defect production.In this work,we consider roughness parameter Ra,profile deviation Pt and roundness deviation RONt of the machined products by a lathe.Intrinsically,these three parameters are much related to the machine spindle parameters of preload,temperature,and rotations per minute(RPMs),while in this paper,spindle vibration and cutting force are taken as inputs and used to predict the three quality parameters.Power spectral density(PSD)based feature extraction,the method to generate compact and well-correlated features,is proposed in details in this paper.Using the efficient features,neural network based machine learning technique turns out to be able to result in high prediction accuracy with R2 score of 0.92 for roughness,0.86 for profile,and 0.95 for roundness.
基金the National Natural Science Foundation of China(No.51405065)
文摘A binary decision diagram(BDD) is a data structure that is used to represent a Boolean function.Converting fault tree into BDD can effectively simplify counting processes and improve the accuracy and effectiveness of the results. However, due to various types of uncertainties in reliability data, we cannot obtain precise failure probabilities. In order to accurately quantify the certainties and obtain much more reliable results, we use BDD method based on fuzzy set theory for reliability quantitative analysis. In this regard, we take W-axis feeding system of heavy-duty computer numerical control(CNC) machine as a project example and adopt fuzzy BDD quantitative analysis method to analyze its reliability. The analysis results(aided by computer calculation)illustrate the effectiveness of the method proposed in this paper.