期刊文献+
共找到5,216篇文章
< 1 2 250 >
每页显示 20 50 100
Adaptation of feed rate for 3-axis CNC high-speed machining 被引量:1
1
作者 张得礼 周来水 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第3期391-395,共5页
To improve the efficiency of CNC machining, assumptive transit circular arc is used to contour two adjacent moves together on the comer to make smooth paths. The radios of transit circular arc can be adjusted with con... To improve the efficiency of CNC machining, assumptive transit circular arc is used to contour two adjacent moves together on the comer to make smooth paths. The radios of transit circular arc can be adjusted with contour accuracy, and the feed rate on the corner can be controlled through limiting the maximum feed rate of transit circular arc segment. A look-ahead algorithm for a series of moves is proposed for speed adjustment in advance, which avoids the occurrence of overload of cutting tool on the comer and reduces the servo track error of parts on the corner or of circular arc move. Equivalent trapezoidal velocity profile is used to analyze the speed of S-curve velocity profile and work out its accurate interpolation, which overcomes the disadvantage of looking up table to calculate feed rate approximately, hence high accuracy and fine surface quality can be obtained while the machining speed is high. The proposed methods can meet the requirements of real-time analysis of high-speed machining. The presented algorithm is effective and has been adopted by CNC system of newly developed high-speed milling machine. 展开更多
关键词 cnc feedrate smoothing S-curve velocity profile high-speed machining
下载PDF
Geometric Error Identification of Gantry-Type CNC Machine Tool Based on Multi-Station Synchronization Laser Tracers
2
作者 Jun Zha Huijie Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期150-162,共13页
Laser tracers are a three-dimensional coordinate measurement system that are widely used in industrial measurement.We propose a geometric error identification method based on multi-station synchronization laser tracer... Laser tracers are a three-dimensional coordinate measurement system that are widely used in industrial measurement.We propose a geometric error identification method based on multi-station synchronization laser tracers to enable the rapid and high-precision measurement of geometric errors for gantry-type computer numerical control(CNC)machine tools.This method also improves on the existing measurement efficiency issues in the single-base station measurement method and multi-base station time-sharing measurement method.We consider a three-axis gantry-type CNC machine tool,and the geometric error mathematical model is derived and established based on the combination of screw theory and a topological analysis of the machine kinematic chain.The four-station laser tracers position and measurement points are realized based on the multi-point positioning principle.A self-calibration algorithm is proposed for the coordinate calibration process of a laser tracer using the Levenberg-Marquardt nonlinear least squares method,and the geometric error is solved using Taylor’s first-order linearization iteration.The experimental results show that the geometric error calculated based on this modeling method is comparable to the results from the Etalon laser tracer.For a volume of 800 mm×1000 mm×350 mm,the maximum differences of the linear,angular,and spatial position errors were 2.0μm,2.7μrad,and 12.0μm,respectively,which verifies the accuracy of the proposed algorithm.This research proposes a modeling method for the precise measurement of errors in machine tools,and the applied nature of this study also makes it relevant both to researchers and those in the industrial sector. 展开更多
关键词 Multi-point positioning Multi-station synchronization cnc machine tool Geometric error Error separation
下载PDF
Numerical Investigation of Thermal Behavior of CNC Machine Tool and Its Effects on Dimensional Accuracy of Machined Parts
3
作者 Erick Matezo-Ngoma Abderrazak El Ouafi Ahmed Chebak 《Journal of Software Engineering and Applications》 2024年第8期617-637,共21页
The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally in... The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally induced positioning error compensation remains the most effective and practical method in this context. However, the efficiency of the compensation process depends on the quality of the model used to predict the thermal errors. The model should consistently reflect the relationships between temperature distribution in the MT structure and thermally induced positioning errors. A judicious choice of the number and location of temperature sensitive points to represent heat distribution is a key factor for robust thermal error modeling. Therefore, in this paper, the temperature sensitive points are selected following a structured thermomechanical analysis carried out to evaluate the effects of various temperature gradients on MT structure deformation intensity. The MT thermal behavior is first modeled using finite element method and validated by various experimentally measured temperature fields using temperature sensors and thermal imaging. MT Thermal behavior validation shows a maximum error of less than 10% when comparing the numerical estimations with the experimental results even under changing operation conditions. The numerical model is used through several series of simulations carried out using varied working condition to explore possible relationships between temperature distribution and thermal deformation characteristics to select the most appropriate temperature sensitive points that will be considered for building an empirical prediction model for thermal errors as function of MT thermal state. Validation tests achieved using an artificial neural network based simplified model confirmed the efficiency of the proposed temperature sensitive points allowing the prediction of the thermally induced errors with an accuracy greater than 90%. 展开更多
关键词 cnc machine Tool Dimensional Accuracy Thermal Errors Error Modelling Numerical Simulation Finite Element Method Artificial Neural Network Error Compensation
下载PDF
An Optimal Feed Interpolator Based on G^2 Continuous Bézier Curves for High-Speed Machining of Linear Tool Path 被引量:6
4
作者 Yongqiao Jin Sheng Zhao Yuhan Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第3期109-118,共10页
A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tange... A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tangency and curvature, huge number of line segments, and short lengths of line segments. These disadvantages hinder the development of high speed machining. To smooth the linear tool path and improve machining efficiency of short line segments, this paper presents an optimal feed interpolator based on G^2 continuous Bézier curves for the linear tool path. First, the areas suitable for fitting are screened out based on the geometric characteristics of continuous short segments (CSSs). CSSs in every area are compressed and fitted into a G^2 Continuous Bézier curve by using the least square method. Then a series of cubic Bézier curves are generated. However, the junction between adjacent Bézier curves is only G^0 continuous. By adjusting the control points and inserting Bézier transition curves between adjacent Bézier curves, the G^2 continuous tool path is constructed. The fitting error is estimated by the second-order Taylor formula. Without iteration, the fitting algorithm can be implemented in real-time environment. Second, the optimal feed interpolator considering the comprehensive constraints (such as the chord error constraint, the maximum normal acceleration, servo capacity of each axis, etc.) is proposed. Simulation and experiment are conducted. The results shows that the proposed method can generate smooth path, decrease the amount of segments and reduce machining time for machining of linear tool path. The proposed research provides an effective method for high-speed machining of complex 2-D/3-D profiles described by short line segments. 展开更多
关键词 G^2 CONTINUOUS path Least SQUARE method high-speed machining CONTINUOUS short SEGMENTS Optimal FEED INTERPOLATOR Data compression
下载PDF
Development of High-speed Machining Database with Case-based Reasoning
5
作者 WANG Zun-tong, LIU Zhan-qiang, AI Xing (School of Mechanical Engineering, Shandong University, Jinan 250061, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期48-49,共2页
Applying high-speed machining technology in shop floor has many benefits, such as manufacturing more accurate parts with better surface finishes. The selection of the appropriate machining parameters plays a very impo... Applying high-speed machining technology in shop floor has many benefits, such as manufacturing more accurate parts with better surface finishes. The selection of the appropriate machining parameters plays a very important role in the implementation of high-speed machining technology. The case-based reasoning is used in the developing of high-speed machining database to overcome the shortage of available high-speed cutting parameters in machining data handbooks and shop floors. The high-speed machining database developed in this paper includes two main components: the machining database and the case-base. The machining database stores the cutting parameters, cutting tool data, work pieces and their materials data, and other relative data, while the case-base stores mainly the successfully solved cases that are problems of work pieces and their machining. The case description and case retrieval methods are described to establish the case-based reasoning high-speed machining database. With the case retrieval method, some succeeded cases similar to the new machining problem can be retrieved from the case-base. The solution of the most matched case is evaluated and modified, and then it is regarded as the proposed solution to the new machining problem. After verification, the problem and its solution are packed up into a new case, and are stored in the case-base for future applications. 展开更多
关键词 case-based reasoning high-speed machining DATABASE CASE
下载PDF
Tool-path planning for free-form surface high-speed high-resolution machining using torus cutter
6
作者 王宇晗 李儒琼 +1 位作者 吴祖育 陈兆能 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第3期337-342,共6页
In CNC machining, two essential components decide the accuracy and machining time for a sculptured surface: one is the step-size interval, the other is the tool-path interval. Due to the limitation of the conventional... In CNC machining, two essential components decide the accuracy and machining time for a sculptured surface: one is the step-size interval, the other is the tool-path interval. Due to the limitation of the conventional method for calculating the tool-path interval, it cannot satisfy the machining requirement for high-speed and high-resolution machining. Accordingly, for high-speed and high-resolution machining, the current study proposes a new tool-path interval algorithm, plus a variable step-size algorithm for NURBS. Furthermore, a new type cutter, which can improve the cutting efficiency, is investigated in the paper. The transversal equation of the torus cutter onto the flat plan is given in this paper. The tool-path interval is calculated with the transversal equation and the proposed algorithm. The illustrated example shows that the redundant tool paths can be reduced because an accurate tool-path interval could be calculated. 展开更多
关键词 high-speed machining tool-path planning free-form surface torus cutter
下载PDF
Failure mode change and material damage with varied machining speeds:a review 被引量:2
7
作者 Jianqiu Zhang Binbin He Bi Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第2期36-60,共25页
High-speed machining(HSM) has been studied for several decades and has potential application in various industries, including the automobile and aerospace industries. However,the underlying mechanisms of HSM have not ... High-speed machining(HSM) has been studied for several decades and has potential application in various industries, including the automobile and aerospace industries. However,the underlying mechanisms of HSM have not been formally reviewed thus far. This article focuses on the solid mechanics framework of adiabatic shear band(ASB) onset and material metallurgical microstructural evolutions in HSM. The ASB onset is described using partial differential systems. Several factors in HSM were considered in the systems, and the ASB onset conditions were obtained by solving these systems or applying the perturbation method to the systems. With increasing machining speed, an ASB can be depressed and further eliminated by shock pressure. The damage observed in HSM exhibits common features. Equiaxed fine grains produced by dynamic recrystallization widely cause damage to ductile materials, and amorphization is the common microstructural evolution in brittle materials. Based on previous studies, potential mechanisms for the phenomena in HSM are proposed. These include the thickness variation of the white layer of ductile materials. These proposed mechanisms would be beneficial to deeply understanding the various phenomena in HSM. 展开更多
关键词 high-speed machining adiabatic shear band subsurface damage dynamic recrystallization
下载PDF
Modeling Method for Flexible Energy Behaviors in CNC Machining Systems 被引量:4
8
作者 Yu-Feng Li Yu-Lin Wang +2 位作者 Yan He Yan Wang Shen-Long Lin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第1期156-166,共11页
CNC machining systems are inevitably confronted with frequent changes in energy behaviors because they are widely used to perform various machining tasks. It is a challenge to understand and analyze the flexible energ... CNC machining systems are inevitably confronted with frequent changes in energy behaviors because they are widely used to perform various machining tasks. It is a challenge to understand and analyze the flexible energy behaviors in CNC machining systems. A method to model flexible energy behaviors in CNC machining systems based on hierarchical objected-oriented Petri net(HOONet) is proposed. The structure of the HOONet is constructed of a high-level model and detail models. The former is used to model operational states for CNC machining systems, and the latter is used to analyze the component models for operational states. The machining parameters having great impacts on energy behaviors in CNC machining systems are declared with the data dictionary in HOONet models. A case study based on a CNC lathe is presented to demonstrate the proposed modeling method. The results show that it is effective for modeling flexible energy behaviors and providing a fine-grained description to quantitatively analyze the energy consumption of CNC machining systems. 展开更多
关键词 Energy behaviors cnc machining systems Modeling method HOONet
下载PDF
OPTIMAL FEED RATE CONTROL FOR MULTI-AXIS CNC MACHINING OF FREE FORM SURFACES 被引量:1
9
作者 Zhan Yong, Zhou Ji, Zhou Yanhong, Zhou Yunfei (School of Mechanical Science and Engineering, Huazhong University of Science and Technology) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2000年第3期171-177,共7页
Considering machining efficiency, surface quality and wear of cutter and machine, it is necessary to maintain high, stable and constant surface feed rate as far as possible.The feed late control strategy for multi-axi... Considering machining efficiency, surface quality and wear of cutter and machine, it is necessary to maintain high, stable and constant surface feed rate as far as possible.The feed late control strategy for multi-axis CNC machining of free-form surfaces is presented. It comprises: ①the determination of effective feed rate; ②the adoption of suitable approaches to smooth feed rate. This strategy considers path geometry, actuator limitation and machine dynamics. The result shows that machining efficiency is improved effectively. 展开更多
关键词 cnc Surface machining Feed rate Multi-axisp
下载PDF
High-Speed Permanent Magnet Electrical Machines - Applications, Key Issues and Challenges 被引量:9
10
作者 Jianxin Shen Xuefei Qin Yunchong Wang 《CES Transactions on Electrical Machines and Systems》 2018年第1期23-33,共11页
In this paper,application examples of high-speed electrical machines are presented,and the machine structures are categorized.Key issues of design and control for the high-speed permanent magnet machines are reviewed,... In this paper,application examples of high-speed electrical machines are presented,and the machine structures are categorized.Key issues of design and control for the high-speed permanent magnet machines are reviewed,including bearings selection,rotor dynamics analysis and design,rotor stress analysis and protection,thermal analysis and design,electromagnetic losses analysis and reduction,sensorless control strategies,as well as comparison and selection of sine-wave and square-wave drive modes.Some challenges are also discussed,so that future studies could be focused. 展开更多
关键词 high-speed machine multi-physics analysis permanent magnet machine power loss sensorless control
下载PDF
CNC机床丝杠热误差实时补偿设计及自动补偿试验
11
作者 杨光 路晓云 《机械管理开发》 2024年第5期43-44,49,共3页
为了降低数控机床丝杠传动系统因热误差引起的定位误差,完成机床工作台各运行阶段的实时补偿。用非接触模式为丝杠非电机连接端安装位移检测器,以电涡流传感器时间监测丝杠端面位置数据,获得丝杠产生的总热误差,通过热补偿得到每段丝杠... 为了降低数控机床丝杠传动系统因热误差引起的定位误差,完成机床工作台各运行阶段的实时补偿。用非接触模式为丝杠非电机连接端安装位移检测器,以电涡流传感器时间监测丝杠端面位置数据,获得丝杠产生的总热误差,通过热补偿得到每段丝杠的热误差程度,确定每段坐标系原点发生的偏移,完成自主补偿机床丝杠热误差的效果。研究结果表明:采用分段补偿方法可以获得比其他热误差补偿模型更优的丝杠全段补偿性能。分别检测丝杠各段发生的热误差再对其实施补偿,可以根据丝杠各部位热误差程度实施补偿。 展开更多
关键词 数控机床 热误差 丝杠传动 实时补偿
下载PDF
The Research of CNC Machining Cutter Choice Based on CAXA 被引量:1
12
作者 RUAN Xiao-guang YUAN Si-cong CAI An-jiang ZHANG Dang-fei 《International Journal of Plant Engineering and Management》 2011年第3期129-133,共5页
The article introduces the unique characteristics of CNC machining center cutter compared to traditional cutters, analyzes the choice of CNC machining cutter and factors of choice. Meanwhile, proved by the examples wi... The article introduces the unique characteristics of CNC machining center cutter compared to traditional cutters, analyzes the choice of CNC machining cutter and factors of choice. Meanwhile, proved by the examples with manufacture software CAXA2004, the correct choice of CNC machining center cutter can give full play to the advantages of CNC machining and improve the economic efficiency and production levels of enterprises. 展开更多
关键词 cnc machining CUTTER CAXA
下载PDF
Study of CNC Grinding Machining Method About Isometric Polygon Profile
13
作者 WANG De-sheng, ZHOU Ai-ping, YUAN Yan-ling (Dept. of Mech. Eng. of JIT, Jiaozuo 454000, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期60-61,共2页
The formed principle and CNC grinding machining method of isometric polygonal profile are studied deeply and systematically. Equation about section curve of isometric polygon profile is set up by means of geometric pr... The formed principle and CNC grinding machining method of isometric polygonal profile are studied deeply and systematically. Equation about section curve of isometric polygon profile is set up by means of geometric principle. With the use of differential geometry theory, the curve is proved to be with geometric feature of convex curve. It is referred to as Isometric Polygonal Curve (IPC), because that is a kind of convex curve on which the distance between any parallel tangent lines is equal. Isometric Polygonal Profile (IPP) or Isometric Polygonal Cone Profile (IPCP) or Isometric Polygonal Topless Cone (IPTC) is formed with the IPC and straight line as generating curve. But the machining and measuring of the IPCP are so inconvenient that it has little value. Keeping in mind the characteristic of the IPP and IPTC, this paper puts forward the program method of CNC grinding machining. Isometric polygonal profile connection is a kind of polygonal profile connection. It has the superiority over keys (prismatic key & spline etc), and can be suit for the situations such as high rotative velocity, large torque, high precision, and small fixed room and vibration. Nowadays, some countries such as America, Russia, German and Switzerland applied CNC machining to the machining of polygon surface coupling parts, which makes their applications in machine productions such as motor engine, heavy machine increase day by day. But reports about concrete machining technology of isometric polygonal profile and programming of CNC machining program are very few. CNC grinding of the IPP and IPTC is one kind of the precision machining technology. It is of great importance to the popularization of the IPP and IPTC connection. From the forming mechanism, we can see that the machining and measuring of the IPP and IPTC are convenient, and therefore they have the value of the popularization. But the machining and measuring of the IPCP are so inconvenient that it has little value. In the programming the CNC grinding of the IPP and IPTC, it is more reasonable to calculate the coordinate of node according to the approaching method of equal error arc. According to the method of CNC grinding mentioned above to design the grinding machine, the structure is simple and of economical and practical. 展开更多
关键词 Isometric Polygonal Profile Isometric Polygonal Topless Cone cnc grinding machining
下载PDF
Calculation for Stator Loss of High-Speed Permanent Magnet Synchronous Machine in Torque-speed Envelope and Restraint Approach for Circulating Current in Windings 被引量:1
14
作者 Yanan Yu Deliang Liang +2 位作者 Senior Member Zhe Liang Qiji Ze 《CES Transactions on Electrical Machines and Systems》 2018年第2期211-219,共9页
Iron loss and copper loss are the significant parts of electrical loss of machines,which are the major parts particularly under high frequency condition.High-speed permanent magnet synchronous machines(HS-PMSM)have th... Iron loss and copper loss are the significant parts of electrical loss of machines,which are the major parts particularly under high frequency condition.High-speed permanent magnet synchronous machines(HS-PMSM)have the benefits of high power density,high efficiency and wide speed range.Which causes the calculation for iron loss and copper loss in whole operating range complex.By analyzing the components and influencing factors of iron loss and copper loss in stator,we have deduced the calculation formula of iron loss and copper loss in whole operating range based on the analytical solution and finite element approach(EFA)solution.According to the calculation solution,taking the influence of operating temperature on the iron loss and copper loss into account,we propose a temperature correction factor and establish the calculation method for the iron loss and copper loss with temperature influences.Finally,by the conductor transposition,we restrain the circulating current under high-frequency operating condition. 展开更多
关键词 Circulating high-speed permanent magnet machines iron loss torque-speed envelope.
下载PDF
Evaluation of Eco-efficiency and Effect on Environment of Remanufacturing A Case Study of CNC-remanufacturing for Used Machining Tools
15
作者 HU Zhong-xiang SHI Xiao-jun SHI Lei 《Journal of Donghua University(English Edition)》 EI CAS 2005年第5期34-36,共3页
A case of remanufacturing used lathes via CNC technology is introduced, whose environmental and economic benefits are evaluated respectively. The results indicate that these environmental and economic benefits are rem... A case of remanufacturing used lathes via CNC technology is introduced, whose environmental and economic benefits are evaluated respectively. The results indicate that these environmental and economic benefits are remarkable, which are directly affected by remanufacturing design, more than 90% materials in used lathes are reused. Finally, the causes of economic and environmental benefits of remanufacturing machine tools are put forward. The remanufacturing design method, implementation procedure, and evaluation method of economic and environmental benefits presented are helpful for other equipment remanufacturing. 展开更多
关键词 REMANUFACTURING cnc machine Tool environmental benefits evaluation method
下载PDF
Research on CNC Turning System of Aspheric Machining Grinding Wheel
16
作者 ZOUQin GUOYin-biao 《Journal of China University of Mining and Technology》 2005年第1期64-67,共4页
The technology of machining aspheric surface with high precision is the premise for the application of aspheric surface. The grinding machining with error compensation is a commonly used method to machine aspheric sur... The technology of machining aspheric surface with high precision is the premise for the application of aspheric surface. The grinding machining with error compensation is a commonly used method to machine aspheric surface, which will directly influence the quality of aspheric workpiece surface. Multifunctional CNC grinding wheel truing system is a four-axis CNC truing system which can be applied to grinding wheel truing. In this system, DSP-based multi-axes motion control card is adopted as the controller, and visual C++ is used as development tool. When the design of hardware and software is completed, the system can implement truing of various grinding wheel with high precision aspheric machining such as plane grinding wheel, arc grinding one, and sphere grinding one. 展开更多
关键词 aspheric machining grinding wheel cnc system truing
下载PDF
Development and Application of Complete Equipment for High-speed Tunnel Boring and Bolting Machines
17
作者 Jinling Xing 《Frontiers Research of Architecture and Engineering》 2019年第1期15-23,共9页
With the improvement of coal mining speed and mechanization level in China,traditional tunnel boring methods can no longer meet the actual needs.In order to solve the problems of low efficiency,high labor intensity,sl... With the improvement of coal mining speed and mechanization level in China,traditional tunnel boring methods can no longer meet the actual needs.In order to solve the problems of low efficiency,high labor intensity,slow tunnel boring speed,bad working environment and poor safety in traditional tunnel boring,on the basis of analyzing the development and application of coal roadway tunnel boring equipment at home and abroad,complete equipment for high-speed tunnel boring and bolting machines was developed by using the integrated technology of tunnel boring and bolting.The complete equipment for high-speed tunnel boring and bolting machines has the functions of tunnel boring and bolting synchronization,once-tunneling,negative pressure dust removal,digital guidance,independent cutting feed,digital cutting,safety monitoring and data interaction,which has the advantages of safety in use,reliability and efficiency. 展开更多
关键词 TUNNEL BORING and BOLTING synchronization high-speed TUNNEL BORING and BOLTING machinES Application
下载PDF
A Calculation Method of Profile Error Influenced by Tool Error for Two-Axis Coordinated CNC Machining of a Spatial Barrel-Cam
18
作者 YIN Ming-Fu, LU Chuan-Yi, CHEN Jin-Kui Xi’an University of Technology, Xi’an 710048, P. R. China Shandong Institute of Technology, Zibo 255012, P. R. China 《International Journal of Plant Engineering and Management》 2001年第2期92-97,共6页
Taking the CNC machining for the spatial barrel-cam with rectilinear translating and a conical roller follower as an example, the calculation method and the law of the profile error influenced by the tool error is given.
关键词 spatial barrel-cam cnc machining profile error calculation method
下载PDF
Continuous prediction method of earthquake early warning magnitude for high-speed railway based on support vector machine
19
作者 Jindong Song Jingbao Zhu Shanyou Li 《Railway Sciences》 2022年第2期307-323,共17页
Purpose–Using the strong motion data ofK-net in Japan,the continuous magnitude prediction method based on support vector machine(SVM)was studied.Design/methodology/approach–In the range of 0.5–10.0 s after the P-wa... Purpose–Using the strong motion data ofK-net in Japan,the continuous magnitude prediction method based on support vector machine(SVM)was studied.Design/methodology/approach–In the range of 0.5–10.0 s after the P-wave arrival,the prediction time window was established at an interval of 0.5 s.12 P-wave characteristic parameters were selected as the model input parameters to construct the earthquake early warning(EEW)magnitude prediction model(SVM-HRM)for high-speed railway based on SVM.Findings–The magnitude prediction results of the SVM-HRM model were compared with the traditional magnitude prediction model and the high-speed railway EEW current norm.Results show that at the 3.0 s time window,themagnitude prediction error of the SVM-HRMmodel is obviously smaller than that of the traditionalτc method and Pd method.The overestimation of small earthquakes is obviously improved,and the construction of the model is not affected by epicenter distance,so it has generalization performance.For earthquake events with themagnitude range of 3–5,the single station realization rate of the SVM-HRMmodel reaches 95%at 0.5 s after the arrival of P-wave,which is better than the first alarm realization rate norm required by“The TestMethod of EEW andMonitoring Systemfor High-Speed Railway.”For earthquake eventswithmagnitudes ranging from3 to 5,5 to 7 and 7 to 8,the single station realization rate of the SVM-HRM model is at 0.5 s,1.5 s and 0.5 s after the P-wave arrival,respectively,which is better than the realization rate norm of multiple stations.Originality/value–At the latest,1.5 s after the P-wave arrival,the SVM-HRM model can issue the first earthquake alarm that meets the norm of magnitude prediction realization rate,which meets the accuracy and continuity requirements of high-speed railway EEW magnitude prediction. 展开更多
关键词 high-speed railway Earthquake early warning Magnitude prediction Support vector machine Characteristic parameters
下载PDF
基于TL-DBN方法的CNC机床节能策略设计
20
作者 钟旭佳 李阳 宋佳佳 《现代工业经济和信息化》 2024年第9期135-136,140,共3页
为了提高数控机床节能性能,设计一种利用迁移学习方法实现数字控制机床(Computer numerical control,CNC)机床的节能控制过程。建立以随机森林(Random forest,RF)实现驱动功能的离散CNC机床能耗调控模型,减小等待阶段所消耗的能量,促进... 为了提高数控机床节能性能,设计一种利用迁移学习方法实现数字控制机床(Computer numerical control,CNC)机床的节能控制过程。建立以随机森林(Random forest,RF)实现驱动功能的离散CNC机床能耗调控模型,减小等待阶段所消耗的能量,促进机床决策效率的快速提升。研究结果表明,时间间隔对机床节能状态影响显著,当间隔增加后,机床由9次切换减少至6次切换,时间间隔设定在25 min最优。各机床都可以在等待阶段通过合适策略达到节能的控制过程,采用该节能控制方案为实现生产过程管控提供了理论依据。 展开更多
关键词 迁移学习 节能控制 cnc机床 深度置信网络
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部