From the SAT physical model, a physical hypothesis named PHHY is proposed. By PHHY, it is proved that there is a universally efficient algorithm for solving SAT problem. Then, by square packing problem, the authors sh...From the SAT physical model, a physical hypothesis named PHHY is proposed. By PHHY, it is proved that there is a universally efficient algorithm for solving SAT problem. Then, by square packing problem, the authors show that there are interesting industrial NP-complete problems which can be solved through SAT algorithms, but each way of solving like this will be much worse than that of a certain direct solving.展开更多
计算命题公式的极小模型在人工智能推理系统中是一项必不可少的任务.然而,即使是正CNF(conjunctive normal form)公式,其极小模型的计算和验证都不是易处理的.当前,计算CNF公式极小模型的主要方法之一是将其转换为析取逻辑程序后用回答...计算命题公式的极小模型在人工智能推理系统中是一项必不可少的任务.然而,即使是正CNF(conjunctive normal form)公式,其极小模型的计算和验证都不是易处理的.当前,计算CNF公式极小模型的主要方法之一是将其转换为析取逻辑程序后用回答集程序(answer set programming,ASP)求解器计算其稳定模型回答集.针对计算CNF公式的极小模型的问题,提出一种基于可满足性问题(satisfiability problem,SAT)求解器的计算极小模型的方法MMSAT;然后结合最近基于极小归约的极小模型验证算法CheckMinMR,提出了基于极小模型分解的计算极小模型方法MRSAT;最后对随机生成的大量的3CNF公式和SAT国际竞赛上的部分工业基准测试用例进行测试.实验结果表明:MMSAT和MRSAT对随机3CNF公式和SAT工业测试用例都是有效的,且计算极小模型的速度都明显快于最新版的clingo,并且在SAT工业实例上发现了clingo有计算出错的情况,而MMSAT和MRSAT则更稳定.展开更多
SAT(Satisfiability)可满足性问题研究具有很广的应用价值,是计算机和人工智能领域内的一个重要问题,也是第一个被证明为NP完全的问题。随着对SAT问题的深入研究,已经提出了很多高效的算法,其中随机算法(WalkSAT)、进化算法等启发式算...SAT(Satisfiability)可满足性问题研究具有很广的应用价值,是计算机和人工智能领域内的一个重要问题,也是第一个被证明为NP完全的问题。随着对SAT问题的深入研究,已经提出了很多高效的算法,其中随机算法(WalkSAT)、进化算法等启发式算法是今年来研究的热点。进化算法是遗传算法的一种,通过对生物组织进化的学习,形成的一种高效算法。针对CNF(Con-jecture Normal Formula)权重和生物进化算法相结合,提出一种有效求解难SAT问题的不完全算法WOSAT.展开更多
基金Project supported by the Chinese High-Tech Program, the National Natural Science Foundation of China and the Chinese Science Fou
文摘From the SAT physical model, a physical hypothesis named PHHY is proposed. By PHHY, it is proved that there is a universally efficient algorithm for solving SAT problem. Then, by square packing problem, the authors show that there are interesting industrial NP-complete problems which can be solved through SAT algorithms, but each way of solving like this will be much worse than that of a certain direct solving.
文摘计算命题公式的极小模型在人工智能推理系统中是一项必不可少的任务.然而,即使是正CNF(conjunctive normal form)公式,其极小模型的计算和验证都不是易处理的.当前,计算CNF公式极小模型的主要方法之一是将其转换为析取逻辑程序后用回答集程序(answer set programming,ASP)求解器计算其稳定模型回答集.针对计算CNF公式的极小模型的问题,提出一种基于可满足性问题(satisfiability problem,SAT)求解器的计算极小模型的方法MMSAT;然后结合最近基于极小归约的极小模型验证算法CheckMinMR,提出了基于极小模型分解的计算极小模型方法MRSAT;最后对随机生成的大量的3CNF公式和SAT国际竞赛上的部分工业基准测试用例进行测试.实验结果表明:MMSAT和MRSAT对随机3CNF公式和SAT工业测试用例都是有效的,且计算极小模型的速度都明显快于最新版的clingo,并且在SAT工业实例上发现了clingo有计算出错的情况,而MMSAT和MRSAT则更稳定.
文摘SAT(Satisfiability)可满足性问题研究具有很广的应用价值,是计算机和人工智能领域内的一个重要问题,也是第一个被证明为NP完全的问题。随着对SAT问题的深入研究,已经提出了很多高效的算法,其中随机算法(WalkSAT)、进化算法等启发式算法是今年来研究的热点。进化算法是遗传算法的一种,通过对生物组织进化的学习,形成的一种高效算法。针对CNF(Con-jecture Normal Formula)权重和生物进化算法相结合,提出一种有效求解难SAT问题的不完全算法WOSAT.