A set of compressed natural gas (CNG) multi-point direct injection system of spark-ignited engines and the corresponding measurement and data acquisition systems were developed in this paper. Based on different inject...A set of compressed natural gas (CNG) multi-point direct injection system of spark-ignited engines and the corresponding measurement and data acquisition systems were developed in this paper. Based on different injection modes, the mixture formation and combustion of CNG low-pressure direct injection (LPDI) engines were studied under varying factors such as air/ fuel ratio, injection timing. Meanwhile, three-dimensional simulations were adopted to explain the mixture formation mechanisms of CNG low-pressure compound direct injection (LPCDI) mode. On the basis of test results and simulation of the mixture homogeneous degree, the conception of injection window was proposed, and the LPCDI mode was proved to be more beneficial to the mixture concentration stratification formation in cylinder under lean-burning conditions, which resulted in effective combustion and stability.展开更多
Based on the analysis of the advantages of the Natural Gas Engine with Direct Injection (NGEDI) and the state of the art of the research in this area, the authors point out that, the NGEDI with high pressure is one ...Based on the analysis of the advantages of the Natural Gas Engine with Direct Injection (NGEDI) and the state of the art of the research in this area, the authors point out that, the NGEDI with high pressure is one potential selection and will have a good application prospects. Through investigation experiment and simulation results, the key techniques are put foreword for deployment of the NGEDI and some solutions are given.展开更多
Research on dual-fuel(DF)engines has become increasingly important as engine manufacturers seek to reduce carbon dioxide emissions.There are significant advantages of using diesel pilot-ignited natural gas engines as ...Research on dual-fuel(DF)engines has become increasingly important as engine manufacturers seek to reduce carbon dioxide emissions.There are significant advantages of using diesel pilot-ignited natural gas engines as DF engines.However,different combustion modes exist due to variations in the formation of the mixture.This research used a simulation model and numerical simulations to explore the combustion characteristics of high-pressure direct injection(HPDI),partially premixed compression ignition(PPCI),and double pilot injection premixed compression ignition(DPPCI)combustion modes under a low-medium load.The results revealed that the DPPCI combustion mode provides higher gross indicated thermal efficiency and more acceptable total hydrocarbon(THC)emission levels than the other modes.Due to its relatively good performance,an experimental study was conducted on the DPPCI mode engine to evaluate the impact of the diesel dual-injection strategy on the combustion process.In the DPPCI mode,a delay in the second pilot ignition injection time increased THC emissions(a maximum value of 4.27g/(kW·h)),decreased the emission of nitrogen oxides(a maximum value of 7.64 g/(kW·h)),increased and then subsequently decreased the gross indicated thermal efficiency values,which reached 50.4%under low-medium loads.展开更多
On the basis of reviewing the development history of drilling engineering technology over a century, this paper describes the technical and scientific background of downhole control engineering, discusses its basic is...On the basis of reviewing the development history of drilling engineering technology over a century, this paper describes the technical and scientific background of downhole control engineering, discusses its basic issues, discipline frame and main study contents, introduces the research progress of downhole control engineering in China over the past 30 years, and envisions the development direction of downhole control engineering in the future. The author proposed the study subject of well trajectory control theory and technology in 1988, and further proposed the concept of downhole control engineering in 1993. Downhole control engineering is a discipline branch, which applies the perspectives and methods of engineering control theory to solve downhole engineering control issues in oil and gas wells; meanwhile, it is an application technology field with interdisciplinarity. Downhole control engineering consists of four main aspects; primarily, investigations about dynamics of downhole system and analysis methods of control signals; secondly, designs of downhole control mechanisms and systems, research of downhole parameters collections and transmission techniques; thirdly, development of downhole control engineering products; fourthly, development of experimental methods and the laboratories. Over the past 30 years, the author and his research group have achieved a number of progress and accomplishments in the four aspects mentioned above. As a research field and a disciplinary branch of oil and gas engineering, downhole control engineering is stepping into a broader and deeper horizon.展开更多
As one of the most important actuators for gasoline direct injection technology,common rail systems provide the requested rail pressure for fuel injection.Special system characteristics,such as coupled discrete-contin...As one of the most important actuators for gasoline direct injection technology,common rail systems provide the requested rail pressure for fuel injection.Special system characteristics,such as coupled discrete-continuous dynamic in the common rail system,limited measurable states,and time-varying engine operating conditions,impel the combination of advanced methods to obtain the desired injection pressure.Therefore,reducing the pressure fluctuation and satisfying engineering implementation have become noteworthy issues for rail pressure control(RPC)systems.In this study,the benchmark problem and the design specification of RPC proposed by 2018 IFAC E-CoSM Committee are introduced.Moreover,a common rail system model is provided to the challengers,and a traditional PI control is applied to show the problem behaviors.Finally,intermediate results of the challengers are summarized briefly.展开更多
Heavy fuel aviation piston engines(HF-APEs)refer to the engine using fuels with high flash point,such as kerosene or light diesel.Here technique specifications of some classical foreign HF-APEs(Hirth3503,Zanzottera 49...Heavy fuel aviation piston engines(HF-APEs)refer to the engine using fuels with high flash point,such as kerosene or light diesel.Here technique specifications of some classical foreign HF-APEs(Hirth3503,Zanzottera 498)are introduced.Recent progress and trend of fuel injection,fuel ignition,working cycle,intake charging,thermal management and electronic control of HF-APE are compared and summarized.Emphases are put on the technological difficulties,solutions and development tendency in the design,retrofitting and manufacturing of HF-APE aiming to provide references for the research of related area and the development of prototype HF-APE in China.展开更多
基金Supported by National High Technology Research and Development Program ("863" Program) of China (No.2008AA11A114)
文摘A set of compressed natural gas (CNG) multi-point direct injection system of spark-ignited engines and the corresponding measurement and data acquisition systems were developed in this paper. Based on different injection modes, the mixture formation and combustion of CNG low-pressure direct injection (LPDI) engines were studied under varying factors such as air/ fuel ratio, injection timing. Meanwhile, three-dimensional simulations were adopted to explain the mixture formation mechanisms of CNG low-pressure compound direct injection (LPCDI) mode. On the basis of test results and simulation of the mixture homogeneous degree, the conception of injection window was proposed, and the LPCDI mode was proved to be more beneficial to the mixture concentration stratification formation in cylinder under lean-burning conditions, which resulted in effective combustion and stability.
文摘Based on the analysis of the advantages of the Natural Gas Engine with Direct Injection (NGEDI) and the state of the art of the research in this area, the authors point out that, the NGEDI with high pressure is one potential selection and will have a good application prospects. Through investigation experiment and simulation results, the key techniques are put foreword for deployment of the NGEDI and some solutions are given.
基金Project(2017YFE0102800)supported by the National Key R&D Program of ChinaProject(19JCYBJC21200)supported by the Tianjin Natural Science Foundation,China。
文摘Research on dual-fuel(DF)engines has become increasingly important as engine manufacturers seek to reduce carbon dioxide emissions.There are significant advantages of using diesel pilot-ignited natural gas engines as DF engines.However,different combustion modes exist due to variations in the formation of the mixture.This research used a simulation model and numerical simulations to explore the combustion characteristics of high-pressure direct injection(HPDI),partially premixed compression ignition(PPCI),and double pilot injection premixed compression ignition(DPPCI)combustion modes under a low-medium load.The results revealed that the DPPCI combustion mode provides higher gross indicated thermal efficiency and more acceptable total hydrocarbon(THC)emission levels than the other modes.Due to its relatively good performance,an experimental study was conducted on the DPPCI mode engine to evaluate the impact of the diesel dual-injection strategy on the combustion process.In the DPPCI mode,a delay in the second pilot ignition injection time increased THC emissions(a maximum value of 4.27g/(kW·h)),decreased the emission of nitrogen oxides(a maximum value of 7.64 g/(kW·h)),increased and then subsequently decreased the gross indicated thermal efficiency values,which reached 50.4%under low-medium loads.
文摘On the basis of reviewing the development history of drilling engineering technology over a century, this paper describes the technical and scientific background of downhole control engineering, discusses its basic issues, discipline frame and main study contents, introduces the research progress of downhole control engineering in China over the past 30 years, and envisions the development direction of downhole control engineering in the future. The author proposed the study subject of well trajectory control theory and technology in 1988, and further proposed the concept of downhole control engineering in 1993. Downhole control engineering is a discipline branch, which applies the perspectives and methods of engineering control theory to solve downhole engineering control issues in oil and gas wells; meanwhile, it is an application technology field with interdisciplinarity. Downhole control engineering consists of four main aspects; primarily, investigations about dynamics of downhole system and analysis methods of control signals; secondly, designs of downhole control mechanisms and systems, research of downhole parameters collections and transmission techniques; thirdly, development of downhole control engineering products; fourthly, development of experimental methods and the laboratories. Over the past 30 years, the author and his research group have achieved a number of progress and accomplishments in the four aspects mentioned above. As a research field and a disciplinary branch of oil and gas engineering, downhole control engineering is stepping into a broader and deeper horizon.
基金the National Nature Science Foundation of China(Nos.61790564,61803173)the Program for Natural Science Foundation of Jilin Province(No.20190103047JH).
文摘As one of the most important actuators for gasoline direct injection technology,common rail systems provide the requested rail pressure for fuel injection.Special system characteristics,such as coupled discrete-continuous dynamic in the common rail system,limited measurable states,and time-varying engine operating conditions,impel the combination of advanced methods to obtain the desired injection pressure.Therefore,reducing the pressure fluctuation and satisfying engineering implementation have become noteworthy issues for rail pressure control(RPC)systems.In this study,the benchmark problem and the design specification of RPC proposed by 2018 IFAC E-CoSM Committee are introduced.Moreover,a common rail system model is provided to the challengers,and a traditional PI control is applied to show the problem behaviors.Finally,intermediate results of the challengers are summarized briefly.
文摘Heavy fuel aviation piston engines(HF-APEs)refer to the engine using fuels with high flash point,such as kerosene or light diesel.Here technique specifications of some classical foreign HF-APEs(Hirth3503,Zanzottera 498)are introduced.Recent progress and trend of fuel injection,fuel ignition,working cycle,intake charging,thermal management and electronic control of HF-APE are compared and summarized.Emphases are put on the technological difficulties,solutions and development tendency in the design,retrofitting and manufacturing of HF-APE aiming to provide references for the research of related area and the development of prototype HF-APE in China.