Modified constraint-induced movement therapy(mCIMT)has shown beneficial effects on motor function improvement after brain injury,but the exact mechanism remains unclear.In this study,amplitude of low frequency fluctua...Modified constraint-induced movement therapy(mCIMT)has shown beneficial effects on motor function improvement after brain injury,but the exact mechanism remains unclear.In this study,amplitude of low frequency fluctuation(ALFF)metrics measured by resting-state functional magnetic resonance imaging was obtained to investigate the efficacy and mechanism of mCIMT in a control co rtical impact(CCI)rat model simulating traumatic brain injury.At 3 days after control co rtical impact model establishment,we found that the mean ALFF(mALFF)signals were decreased in the left motor cortex,somatosensory co rtex,insula cortex and the right motor co rtex,and were increased in the right corpus callosum.After 3 weeks of an 8-hour daily mClMT treatment,the mALFF values were significantly increased in the bilateral hemispheres compared with those at 3 days postoperatively.The mALFF signal valu es of left corpus callosum,left somatosensory cortex,right medial prefro ntal cortex,right motor co rtex,left postero dorsal hippocampus,left motor cortex,right corpus callosum,and right somatosensory cortex were increased in the mCIMT group compared with the control cortical impact group.Finally,we identified brain regions with significantly decreased mALFF valu es at 3 days postoperatively.Pearson correlation coefficients with the right forelimb sliding score indicated that the improvement in motor function of the affected upper limb was associated with an increase in mALFF values in these brain regions.Our findings suggest that functional co rtical plasticity changes after brain injury,and that mCIMT is an effective method to improve affected upper limb motor function by promoting bilateral hemispheric co rtical remodeling.mALFF values correlate with behavio ral changes and can potentially be used as biomarkers to assess dynamic cortical plasticity after traumatic brain injury.展开更多
BACKGROUND:Previous studies have demonstrated that acupuncture treatment could ameliorate impaired motor function,and these positive effects might be due to neural plasticity.OBJECTIVE:Myelin basic protein(MBP),mi...BACKGROUND:Previous studies have demonstrated that acupuncture treatment could ameliorate impaired motor function,and these positive effects might be due to neural plasticity.OBJECTIVE:Myelin basic protein(MBP),microtubule-associated protein 2(MAP2),growth-associated protein-43(GAP-43),and synaptophysin(SYN) were selected as markers of neural remodeling,and expression of these markers was evaluated with regard to altered motor function following brain injury and acupuncture treatment.DESIGN,TIME AND SETTING:A completely randomized experiment was performed at the Central Laboratory of Peking University First Hospital from November 2006 to May 2007.MATERIALS:Twenty-four Sprague Dawley rat pups,aged 7 days,were selected for the present experiment.The left common carotid artery was ligated to establish a rat model of ischemic-hypoxic brain injury.METHODS:All animals were randomly divided into three groups:sham operation,model,and electro-acupuncture treatment,with 8 rats in each group.Rats in the model and electro-acupuncture treatment group underwent establishment of ischemic-hypoxic brain injury.Upon model established,rats underwent hypobaric oxygen intervention for 24 hours.Only the left common carotid artery was exposed in rats of the sham operation group,without model establishment or oxygen intervention.The rats in the electro-acupuncture treatment group were treated with electro-acupuncture.One acupuncture needle electrode was inserted into the subcutaneous layer at the Baihui and Dazhui acupoint.The stimulation condition of the electro-acupuncture simulator was set to an amplitude-modulated wave of 0-100% and alternative frequency of 100 cycles/second,as well as frequency-modulated wave of 2-100 Hz and an alternative frequency of 3 cycles/second.Maximal current through the two electrodes was limited to 3-5 mA.The stimulation lasted for 30 minutes per day for 2 weeks.Rats in the sham operation and model groups were not treated with electro-acupuncture,but only fixed to the table for the same time period.MAIN OUTCOME MEASURES:After 2 weeks stimulation,expression of MBP,MAP2,GAP-43,and SYN were detected in the brain by immunohistochemistry.Motor function was evaluated in the three groups.RESULTS:In the sham operation group,MBP was abundant in the myelinated nerve fibers.In the electro-acupuncture treatment group,however,the corpus callosum exhibited more MBP staining than the model group.MAP2 expression was increased in the model group,and increased further in the electro-acupuncture treatment group compared with the sham operation group.GAP-43 expression in the cerebral cortex was less in model group than in sham operation,but present in abundance in the electro-acupuncture treatment group.SYN expression in the cerebral cortex was less in the model and electro-acupuncture treatment group compared with the sham operation group.There was no significant difference in SYN expression and distribution between the model and electro-acupuncture treatment groups.Motor function of rats in the electro-acupuncture treatment group was significantly better than the model group(P 〈 0.05),although function remained lower than the sham operation group(P 〈 0.05).CONCLUSION:Two weeks of electro-acupuncture treatment improved motor function in rats,and protein markers related to neural plasticity also changed,which may be a mechanism for improved motor function in rats with ischemic-hypoxic brain injury.展开更多
Brain plasticity, including anatomical changes and functional reorganization, is the physiological basis of functional recovery after spinal cord injury(SCI). The correlation between brain anatomical changes and fun...Brain plasticity, including anatomical changes and functional reorganization, is the physiological basis of functional recovery after spinal cord injury(SCI). The correlation between brain anatomical changes and functional reorganization after SCI is unclear. This study aimed to explore whether alterations of cortical structure and network function are concomitant in sensorimotor areas after incomplete SCI. Eighteen patients with incomplete SCI(mean age 40.94 ± 14.10 years old; male:female, 7:11) and 18 healthy subjects(37.33 ± 11.79 years old; male:female, 7:11) were studied by resting state functional magnetic resonance imaging. Gray matter volume(GMV) and functional connectivity were used to evaluate cortical structure and network function, respectively. There was no significant alteration of GMV in sensorimotor areas in patients with incomplete SCI compared with healthy subjects. Intra-hemispheric functional connectivity between left primary somatosensory cortex(BA1) and left primary motor cortex(BA4), and left BA1 and left somatosensory association cortex(BA5) was decreased, as well as inter-hemispheric functional connectivity between left BA1 and right BA4, left BA1 and right BA5, and left BA4 and right BA5 in patients with SCI. Functional connectivity between both BA4 areas was also decreased. The decreased functional connectivity between the left BA1 and the right BA4 positively correlated with American Spinal Injury Association sensory score in SCI patients. The results indicate that alterations of cortical anatomical structure and network functional connectivity in sensorimotor areas were non-concomitant in patients with incomplete SCI, indicating the network functional changes in sensorimotor areas may not be dependent on anatomic structure. The strength of functional connectivity within sensorimotor areas could serve as a potential imaging biomarker for assessment and prediction of sensory function in patients with incomplete SCI. This trial was registered with the Chinese Clinical Trial Registry(registration number: Chi CTR-ROC-17013566).展开更多
Traumatic brain injury is an important global public health problem.Traumatic brain injury not only causes neural cell death,but also induces dendritic spine degeneration.Spared neurons from cell death in the injured ...Traumatic brain injury is an important global public health problem.Traumatic brain injury not only causes neural cell death,but also induces dendritic spine degeneration.Spared neurons from cell death in the injured brain may exhibit dendrite damage,dendritic spine degeneration,mature spine loss,synapse loss,and impairment of activity.Dendritic degeneration and synapse loss may significantly contribute to functional impairments and neurological disorders following traumatic brain injury.Normal function of the nervous system depends on maintenance of the functionally intact synaptic connections between the presynaptic and postsynaptic spines from neurons and their target cells.During synaptic plasticity,the numbers and shapes of dendritic spines undergo dynamic reorganization.Enlargement of spine heads and the formation and stabilization of new spines are associated with long-term potentiation,while spine shrinkage and retraction are associated with long-term depression.Consolidation of memory is associated with remodeling and growth of preexisting synapses and the formation of new synapses.To date,there is no effective treatment to prevent dendritic degeneration and synapse loss.This review outlines the current data related to treatments targeting dendritic spines that propose to enhance spine remodeling and improve functional recovery after traumatic brain injury.The mechanisms underlying proposed beneficial effects of therapy targeting dendritic spines remain elusive,possibly including blocking activation of Cofilin induced by beta amyloid,Ras activation,and inhibition of GSK-3 signaling pathway.Further understanding of the molecular and cellular mechanisms underlying synaptic degeneration/loss following traumatic brain injury will advance the understanding of the pathophysiology induced by traumatic brain injury and may lead to the development of novel treatments for traumatic brain injury.展开更多
The present study reports on a 23-year-old male patient with somatosensory dysfunction of the left hand following cortical contusion. His somatosensory dysfunction recovered to a nearly normal state at 6 months after ...The present study reports on a 23-year-old male patient with somatosensory dysfunction of the left hand following cortical contusion. His somatosensory dysfunction recovered to a nearly normal state at 6 months after injury. Functional MRI results demonstrated that the contralateral primary sensorimotor cortex centered on the primary somatosensroy cortex was activated during touch stimulation of the patient's right hand and either hand of control subjects. By contrast, the anterior area of the lesion centered on the precentral knob in the right hemisphere was activated during touch stimulation of the left hand. These findings show that the somatosensory function of the affected hand appears to have been recovered by the somatosensory cortex reorganizing into the anterior area of the contused primary somatosensory cortex.展开更多
Perilesional reorganization is an important recovery mechanism for stroke patients because it yields good motor outcomes. However, perilesional reorganization remains poorly understood. The scientific basis for stroke...Perilesional reorganization is an important recovery mechanism for stroke patients because it yields good motor outcomes. However, perilesional reorganization remains poorly understood. The scientific basis for stroke rehabilitation can be established when detailed mechanisms of recovery are clarified. In addition, studies at the subcortical level remain in the early stages. Therefore, the present study suggested that additional investigations should focus on perilesional reorganization at the subcortical level, identifying the critical period for this mechanism and determining treatment strategies and modalities to facilitate development. The present study reviews literature focused on perilesional reorganization in stroke patients with regard to demonstration, clinical characteristics, and rehabilitative aspects, as well as previous studies of perilesional reorganization at cortical and subcortical levels.展开更多
Carpal tunnel syndrome is the most common compressive neuropathy,presenting with sensorimotor dysfunction.In carpal tunnel syndrome patients,irregular afferent signals on functional magnetic resonance imaging are asso...Carpal tunnel syndrome is the most common compressive neuropathy,presenting with sensorimotor dysfunction.In carpal tunnel syndrome patients,irregular afferent signals on functional magnetic resonance imaging are associated with changes in neural plasticity during peripheral nerve injury.However,it is difficult to obtain multi-point neuroimaging data of the brain in the clinic.In the present study,a rat model of median nerve compression was established by median nerve ligation,i.e.,carpal tunnel syndrome model.Sensory cortex remodeling was determined by functional magnetic resonance imaging between normal rats and carpal tunnel syndrome models at 2 weeks and 2 months after operation.Stimulation of bilateral paws by electricity for 30 seconds,alternating with 30 seconds of rest period(repeatedly 3 times),resulted in activation of the contralateral sensorimotor cortex in normal rats.When carpal tunnel syndrome rats received this stimulation,the contralateral cerebral hemisphere was markedly activated at 2 weeks after operation,including the primary motor cortex,cerebellum,and thalamus.Moreover,this activation was not visible at 2 months after operation.These findings suggest that significant remodeling of the cerebral cortex appears at 2 weeks and 2 months after median nerve compression.展开更多
Virtual reality is a new technology that simulates a three-dimensional virtual world on a com- puter and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact...Virtual reality is a new technology that simulates a three-dimensional virtual world on a com- puter and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can acti- vate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.展开更多
Studies have confirmed that low-frequency repetitive transcranial magnetic stimulation can decrease the activity of cortical neurons, and high-frequency repetitive transcranial magnetic stimulation can increase the ex...Studies have confirmed that low-frequency repetitive transcranial magnetic stimulation can decrease the activity of cortical neurons, and high-frequency repetitive transcranial magnetic stimulation can increase the excitability of cortical neurons. However, there are few studies concerning the use of different frequencies of repetitive transcranial magnetic stimulation on the recovery of upper-limb motor function after cerebral infarction. We hypothesized that different frequencies of repetitive transcranial magnetic stimulation in patients with cerebral infarction would produce different effects on the recovery of upper-limb motor function. This study enrolled 127 patients with upper-limb dysfunction during the subacute phase of cerebral infarction. These patients were randomly assigned to three groups. The low-frequency group comprised 42 patients who were treated with 1 Hz repetitive transcranial magnetic stimulation on the contralateral hemisphere primary motor cortex (M1). The high-frequency group comprised 43 patients who were treated with 10 Hz repetitive transcranial magnetic stimulation on ipsilateral M1. Finally, the sham group comprised 42 patients who were treated with 10 Hz of false stimulation on ipsilateral M1. A total of 135 seconds of stimulation was applied in the sham group and high-frequency group. At 2 weeks after treatment, cortical latency of motor-evoked potentials and central motor conduction time were significantly lower compared with before treatment. Moreover, motor function scores were significantly improved. The above indices for the low- and high-frequency groups were significantly different compared with the sham group. However, there was no significant difference between the low- and high-frequency groups. The results show that low- and high-frequency repetitive transcranial magnetic stimulation can similarly improve upper-limb motor function in patients with cerebral infarction.展开更多
More than half of stroke patients live with different levels of motor dysfunction after receiving routine rehabilitation treatments.Therefore,new rehabilitation technologies are urgently needed as auxiliary treatments...More than half of stroke patients live with different levels of motor dysfunction after receiving routine rehabilitation treatments.Therefore,new rehabilitation technologies are urgently needed as auxiliary treatments for motor rehabilitation.Based on routine rehabilitation treatments,a new intelligent rehabilitation platform has been developed for accurate evaluation of function and rehabilitation training.The emerging intelligent rehabilitation techniques can promote the development of motor function rehabilitation in terms of informatization,standardization,and intelligence.Traditional assessment methods are mostly subjective,depending on the experience and expertise of clinicians,and lack standardization and precision.It is therefore difficult to track functional changes during the rehabilitation process.Emerging intelligent rehabilitation techniques provide objective and accurate functional assessment for stroke patients that can promote improvement of clinical guidance for treatment.Artificial intelligence and neural networks play a critical role in intelligent rehabilitation.Multiple novel techniques,such as braincomputer interfaces,virtual reality,neural circuit-magnetic stimulation,and robot-assisted therapy,have been widely used in the clinic.This review summarizes the emerging intelligent rehabilitation techniques for the evaluation and treatment of motor dysfunction caused by nervous system diseases.展开更多
基金supported by the National Key R&D Program of China,Nos.2020YFC2004202(to DSX),2018 YFC2001600(to XYH)the National Natural Science Foundation of China,Nos.81974358(to DSX),81802249(to XYH)and 82172554(to XYH)。
文摘Modified constraint-induced movement therapy(mCIMT)has shown beneficial effects on motor function improvement after brain injury,but the exact mechanism remains unclear.In this study,amplitude of low frequency fluctuation(ALFF)metrics measured by resting-state functional magnetic resonance imaging was obtained to investigate the efficacy and mechanism of mCIMT in a control co rtical impact(CCI)rat model simulating traumatic brain injury.At 3 days after control co rtical impact model establishment,we found that the mean ALFF(mALFF)signals were decreased in the left motor cortex,somatosensory co rtex,insula cortex and the right motor co rtex,and were increased in the right corpus callosum.After 3 weeks of an 8-hour daily mClMT treatment,the mALFF values were significantly increased in the bilateral hemispheres compared with those at 3 days postoperatively.The mALFF signal valu es of left corpus callosum,left somatosensory cortex,right medial prefro ntal cortex,right motor co rtex,left postero dorsal hippocampus,left motor cortex,right corpus callosum,and right somatosensory cortex were increased in the mCIMT group compared with the control cortical impact group.Finally,we identified brain regions with significantly decreased mALFF valu es at 3 days postoperatively.Pearson correlation coefficients with the right forelimb sliding score indicated that the improvement in motor function of the affected upper limb was associated with an increase in mALFF values in these brain regions.Our findings suggest that functional co rtical plasticity changes after brain injury,and that mCIMT is an effective method to improve affected upper limb motor function by promoting bilateral hemispheric co rtical remodeling.mALFF values correlate with behavio ral changes and can potentially be used as biomarkers to assess dynamic cortical plasticity after traumatic brain injury.
基金International Science and Technology Cooperation Fundation of the Ministry of Science and Technology of China, No.2008DFA31850
文摘BACKGROUND:Previous studies have demonstrated that acupuncture treatment could ameliorate impaired motor function,and these positive effects might be due to neural plasticity.OBJECTIVE:Myelin basic protein(MBP),microtubule-associated protein 2(MAP2),growth-associated protein-43(GAP-43),and synaptophysin(SYN) were selected as markers of neural remodeling,and expression of these markers was evaluated with regard to altered motor function following brain injury and acupuncture treatment.DESIGN,TIME AND SETTING:A completely randomized experiment was performed at the Central Laboratory of Peking University First Hospital from November 2006 to May 2007.MATERIALS:Twenty-four Sprague Dawley rat pups,aged 7 days,were selected for the present experiment.The left common carotid artery was ligated to establish a rat model of ischemic-hypoxic brain injury.METHODS:All animals were randomly divided into three groups:sham operation,model,and electro-acupuncture treatment,with 8 rats in each group.Rats in the model and electro-acupuncture treatment group underwent establishment of ischemic-hypoxic brain injury.Upon model established,rats underwent hypobaric oxygen intervention for 24 hours.Only the left common carotid artery was exposed in rats of the sham operation group,without model establishment or oxygen intervention.The rats in the electro-acupuncture treatment group were treated with electro-acupuncture.One acupuncture needle electrode was inserted into the subcutaneous layer at the Baihui and Dazhui acupoint.The stimulation condition of the electro-acupuncture simulator was set to an amplitude-modulated wave of 0-100% and alternative frequency of 100 cycles/second,as well as frequency-modulated wave of 2-100 Hz and an alternative frequency of 3 cycles/second.Maximal current through the two electrodes was limited to 3-5 mA.The stimulation lasted for 30 minutes per day for 2 weeks.Rats in the sham operation and model groups were not treated with electro-acupuncture,but only fixed to the table for the same time period.MAIN OUTCOME MEASURES:After 2 weeks stimulation,expression of MBP,MAP2,GAP-43,and SYN were detected in the brain by immunohistochemistry.Motor function was evaluated in the three groups.RESULTS:In the sham operation group,MBP was abundant in the myelinated nerve fibers.In the electro-acupuncture treatment group,however,the corpus callosum exhibited more MBP staining than the model group.MAP2 expression was increased in the model group,and increased further in the electro-acupuncture treatment group compared with the sham operation group.GAP-43 expression in the cerebral cortex was less in model group than in sham operation,but present in abundance in the electro-acupuncture treatment group.SYN expression in the cerebral cortex was less in the model and electro-acupuncture treatment group compared with the sham operation group.There was no significant difference in SYN expression and distribution between the model and electro-acupuncture treatment groups.Motor function of rats in the electro-acupuncture treatment group was significantly better than the model group(P 〈 0.05),although function remained lower than the sham operation group(P 〈 0.05).CONCLUSION:Two weeks of electro-acupuncture treatment improved motor function in rats,and protein markers related to neural plasticity also changed,which may be a mechanism for improved motor function in rats with ischemic-hypoxic brain injury.
基金supported by a grant from Tsinghua University Initiative Scientific Research Program,No.2014081266,20131089382the National Natural Science Foundation of China,No.61171002,60372023
文摘Brain plasticity, including anatomical changes and functional reorganization, is the physiological basis of functional recovery after spinal cord injury(SCI). The correlation between brain anatomical changes and functional reorganization after SCI is unclear. This study aimed to explore whether alterations of cortical structure and network function are concomitant in sensorimotor areas after incomplete SCI. Eighteen patients with incomplete SCI(mean age 40.94 ± 14.10 years old; male:female, 7:11) and 18 healthy subjects(37.33 ± 11.79 years old; male:female, 7:11) were studied by resting state functional magnetic resonance imaging. Gray matter volume(GMV) and functional connectivity were used to evaluate cortical structure and network function, respectively. There was no significant alteration of GMV in sensorimotor areas in patients with incomplete SCI compared with healthy subjects. Intra-hemispheric functional connectivity between left primary somatosensory cortex(BA1) and left primary motor cortex(BA4), and left BA1 and left somatosensory association cortex(BA5) was decreased, as well as inter-hemispheric functional connectivity between left BA1 and right BA4, left BA1 and right BA5, and left BA4 and right BA5 in patients with SCI. Functional connectivity between both BA4 areas was also decreased. The decreased functional connectivity between the left BA1 and the right BA4 positively correlated with American Spinal Injury Association sensory score in SCI patients. The results indicate that alterations of cortical anatomical structure and network functional connectivity in sensorimotor areas were non-concomitant in patients with incomplete SCI, indicating the network functional changes in sensorimotor areas may not be dependent on anatomic structure. The strength of functional connectivity within sensorimotor areas could serve as a potential imaging biomarker for assessment and prediction of sensory function in patients with incomplete SCI. This trial was registered with the Chinese Clinical Trial Registry(registration number: Chi CTR-ROC-17013566).
文摘Traumatic brain injury is an important global public health problem.Traumatic brain injury not only causes neural cell death,but also induces dendritic spine degeneration.Spared neurons from cell death in the injured brain may exhibit dendrite damage,dendritic spine degeneration,mature spine loss,synapse loss,and impairment of activity.Dendritic degeneration and synapse loss may significantly contribute to functional impairments and neurological disorders following traumatic brain injury.Normal function of the nervous system depends on maintenance of the functionally intact synaptic connections between the presynaptic and postsynaptic spines from neurons and their target cells.During synaptic plasticity,the numbers and shapes of dendritic spines undergo dynamic reorganization.Enlargement of spine heads and the formation and stabilization of new spines are associated with long-term potentiation,while spine shrinkage and retraction are associated with long-term depression.Consolidation of memory is associated with remodeling and growth of preexisting synapses and the formation of new synapses.To date,there is no effective treatment to prevent dendritic degeneration and synapse loss.This review outlines the current data related to treatments targeting dendritic spines that propose to enhance spine remodeling and improve functional recovery after traumatic brain injury.The mechanisms underlying proposed beneficial effects of therapy targeting dendritic spines remain elusive,possibly including blocking activation of Cofilin induced by beta amyloid,Ras activation,and inhibition of GSK-3 signaling pathway.Further understanding of the molecular and cellular mechanisms underlying synaptic degeneration/loss following traumatic brain injury will advance the understanding of the pathophysiology induced by traumatic brain injury and may lead to the development of novel treatments for traumatic brain injury.
基金the National Research Foundation of Korea Grant funded by the Korean Government, No. KRF-2008-314-E00173
文摘The present study reports on a 23-year-old male patient with somatosensory dysfunction of the left hand following cortical contusion. His somatosensory dysfunction recovered to a nearly normal state at 6 months after injury. Functional MRI results demonstrated that the contralateral primary sensorimotor cortex centered on the primary somatosensroy cortex was activated during touch stimulation of the patient's right hand and either hand of control subjects. By contrast, the anterior area of the lesion centered on the precentral knob in the right hemisphere was activated during touch stimulation of the left hand. These findings show that the somatosensory function of the affected hand appears to have been recovered by the somatosensory cortex reorganizing into the anterior area of the contused primary somatosensory cortex.
基金the National Research Foundation of Korea Grant funded by the Korean Government, No. KRF-2008-314-E00173
文摘Perilesional reorganization is an important recovery mechanism for stroke patients because it yields good motor outcomes. However, perilesional reorganization remains poorly understood. The scientific basis for stroke rehabilitation can be established when detailed mechanisms of recovery are clarified. In addition, studies at the subcortical level remain in the early stages. Therefore, the present study suggested that additional investigations should focus on perilesional reorganization at the subcortical level, identifying the critical period for this mechanism and determining treatment strategies and modalities to facilitate development. The present study reviews literature focused on perilesional reorganization in stroke patients with regard to demonstration, clinical characteristics, and rehabilitative aspects, as well as previous studies of perilesional reorganization at cortical and subcortical levels.
基金supported by the National Natural Science Foundation of China,No.81371965,81672144a grant from the Shanghai Pujiang Program of China,No.16PJD035
文摘Carpal tunnel syndrome is the most common compressive neuropathy,presenting with sensorimotor dysfunction.In carpal tunnel syndrome patients,irregular afferent signals on functional magnetic resonance imaging are associated with changes in neural plasticity during peripheral nerve injury.However,it is difficult to obtain multi-point neuroimaging data of the brain in the clinic.In the present study,a rat model of median nerve compression was established by median nerve ligation,i.e.,carpal tunnel syndrome model.Sensory cortex remodeling was determined by functional magnetic resonance imaging between normal rats and carpal tunnel syndrome models at 2 weeks and 2 months after operation.Stimulation of bilateral paws by electricity for 30 seconds,alternating with 30 seconds of rest period(repeatedly 3 times),resulted in activation of the contralateral sensorimotor cortex in normal rats.When carpal tunnel syndrome rats received this stimulation,the contralateral cerebral hemisphere was markedly activated at 2 weeks after operation,including the primary motor cortex,cerebellum,and thalamus.Moreover,this activation was not visible at 2 months after operation.These findings suggest that significant remodeling of the cerebral cortex appears at 2 weeks and 2 months after median nerve compression.
基金supported by the National Natural Science Foundation of China,No.30973165 and 81372108Guangdong Province College Students Innovative Research Projects in 2013
文摘Virtual reality is a new technology that simulates a three-dimensional virtual world on a com- puter and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can acti- vate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.
基金several colleague therapists of the Rehabilitation Medicine Department of the Affiliated Hospital of Qingdao University of China for their support and selfless help
文摘Studies have confirmed that low-frequency repetitive transcranial magnetic stimulation can decrease the activity of cortical neurons, and high-frequency repetitive transcranial magnetic stimulation can increase the excitability of cortical neurons. However, there are few studies concerning the use of different frequencies of repetitive transcranial magnetic stimulation on the recovery of upper-limb motor function after cerebral infarction. We hypothesized that different frequencies of repetitive transcranial magnetic stimulation in patients with cerebral infarction would produce different effects on the recovery of upper-limb motor function. This study enrolled 127 patients with upper-limb dysfunction during the subacute phase of cerebral infarction. These patients were randomly assigned to three groups. The low-frequency group comprised 42 patients who were treated with 1 Hz repetitive transcranial magnetic stimulation on the contralateral hemisphere primary motor cortex (M1). The high-frequency group comprised 43 patients who were treated with 10 Hz repetitive transcranial magnetic stimulation on ipsilateral M1. Finally, the sham group comprised 42 patients who were treated with 10 Hz of false stimulation on ipsilateral M1. A total of 135 seconds of stimulation was applied in the sham group and high-frequency group. At 2 weeks after treatment, cortical latency of motor-evoked potentials and central motor conduction time were significantly lower compared with before treatment. Moreover, motor function scores were significantly improved. The above indices for the low- and high-frequency groups were significantly different compared with the sham group. However, there was no significant difference between the low- and high-frequency groups. The results show that low- and high-frequency repetitive transcranial magnetic stimulation can similarly improve upper-limb motor function in patients with cerebral infarction.
基金the National Key Research and Development Project of China,No.2020YFC2004200(to ZYL)the National Natural Science Foundation of China,Nos.61761166007(to ZYL),81772453(to DSX),81974358(to DSX),31771071(to ZYL)Fundamental Research Funds for Central Public Welfare Research Institutes,No.118009001000160001(to ZYL)。
文摘More than half of stroke patients live with different levels of motor dysfunction after receiving routine rehabilitation treatments.Therefore,new rehabilitation technologies are urgently needed as auxiliary treatments for motor rehabilitation.Based on routine rehabilitation treatments,a new intelligent rehabilitation platform has been developed for accurate evaluation of function and rehabilitation training.The emerging intelligent rehabilitation techniques can promote the development of motor function rehabilitation in terms of informatization,standardization,and intelligence.Traditional assessment methods are mostly subjective,depending on the experience and expertise of clinicians,and lack standardization and precision.It is therefore difficult to track functional changes during the rehabilitation process.Emerging intelligent rehabilitation techniques provide objective and accurate functional assessment for stroke patients that can promote improvement of clinical guidance for treatment.Artificial intelligence and neural networks play a critical role in intelligent rehabilitation.Multiple novel techniques,such as braincomputer interfaces,virtual reality,neural circuit-magnetic stimulation,and robot-assisted therapy,have been widely used in the clinic.This review summarizes the emerging intelligent rehabilitation techniques for the evaluation and treatment of motor dysfunction caused by nervous system diseases.