A series of tungstate red phosphors K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)were successfully prepared by sol-gel method,and the effects of the introduction of Li~+and SO_(4)^(2-)on the fluorescence intensity and the...A series of tungstate red phosphors K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)were successfully prepared by sol-gel method,and the effects of the introduction of Li~+and SO_(4)^(2-)on the fluorescence intensity and thermal quenching properties of the prepared K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)phosphors were investigated.The X-ray diffraction data show that the prepared(Li^(+)and SO_(4)^(2-))-doped KEu(WO_(4))_(2)phosphors have a monoclinic tetragonal structure.In addition,the emission intensities of all the observed emission peaks change significantly with the increase of Li~+doping concentration,especially the intensity of the emission peaks at 615 nm fluctuated significantly and reached the maximum at x=0.3 and y=0.2.The K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)phosphors are found to have the highest fluorescence intensity at x=0.3 and y=0.2.Moreover,the K_(0.7)Li_(0.3)Eu(WO_(4))_(1.8)(SO_(4))_(0.2)phosphor has better thermal quenching properties and luminescence efficiency,and the experimental results indicates that the fluorescence intensity and thermal burst performance of KEu(WO_(4))_(2)red phosphor could be effectively improved by using low-cost bionic doping of Li^(+)and SO_(4)^(2-).展开更多
The combined effects of straw incorporation(SI)and polymer-coated urea(PCU)application on soil ammonia(NH_(3))and nitrous oxide(N_(2)O)emissions from agricultural fields have not been comprehensively evaluated in Nort...The combined effects of straw incorporation(SI)and polymer-coated urea(PCU)application on soil ammonia(NH_(3))and nitrous oxide(N_(2)O)emissions from agricultural fields have not been comprehensively evaluated in Northwest China.We conducted a two-year field experiment to assess the effects of combining SI with either uncoated urea(U)or PCU on soil NH_(3)emissions,N_(2)O emissions,winter wheat yields,yield-scaled NH_(3)(/NH_(3)),and yield-scaled N_(2)O(/N_(2)O).Five treatments were investigated,no nitrogen(N)fertilizer(N_(0)),U application at 150 kg N ha-1 with and without SI(SI+U and S_(0)+U),and PCU application at 150 kg N ha^(-1) with and without SI(SI+PCU and S_(0)+PCU).The results showed that the NH_(3);emissions increased by 20.98-34.35%following Sl compared to straw removal,mainly due to increases in soil ammonium(NH_(4)^(+)-N)content and water-flled pore space(WFPS).SI resulted in higher N_(2)O emissions than under the So scenario by 13.31-49.23%due to increases in soil inorganic N(SIN)contents,WFPS,and soil microbial biomass.In contrast,the PCU application reduced the SIN contents compared to the U application,reducing the NH_(3)and N_(2)O emissions by 45.99-58.07 and 18.08-53.04%,respectively.Moreover,no significant positive effects of the SI or PCU applications on the winter wheat yield were observed.The lowest /NH_(3) and /N_(2)O values were observed under the S_(0)+PCU and SI+PCU treatments.Our results suggest that single PCU applications and their combination with straw are the optimal agricultural strategies for mitigating gaseous N emissions and maintaining optimal winter wheat yields in Northwest China.展开更多
The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction...The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction(ORR)compared to the disordered atomic structures in ordinary solid-solution alloy NPs.Accordingly,through a facile and scalable synthetic method,a series of carbon-supported ultrafine Pt_3Co_(x)Mn_(1-x)ternary INPs are prepared in this work,which possess the"skin-like"ultrathin Pt shells,the ordered L1_(2) atomic structure,and the high-even dispersion on supports(L1_(2)-Pt_3Co_(x)Mn_(1-x)/~SPt INPs/C).Electrochemical results present that the composition-optimized L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C exhibits the highest electrocata lytic activity among the series,which are also much better than those of the pristine ultrafine Pt/C.Besides,it also has a greatly enhanced electrochemical stability.In addition,the effects of annealing temperature and time are further investigated.More importantly,such superior ORR electrocatalytic performance of L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C are also well demonstrated in practical fuel cells.Physicochemical characterization analyses further reveal the major origins of the greatly enhanced ORR electrocata lytic performance:the Pt-Co-Mn alloy-induced geometric and ligand effects as well as the extremely high L1_(2) atomic-ordering degree.This work not only successfully develops a highly active and stable ordered ternary intermetallic ORR electrocatalyst,but also elucidates the corresponding"structure-function"relationship,which can be further applied in designing other intermetallic(electro)catalysts.展开更多
The rising flexible and intelligent electronics greatly facilitate the noninvasive and timely tracking of physiological information in telemedicine healthcare.Meticulously building bionic-sensitive moieties is vital f...The rising flexible and intelligent electronics greatly facilitate the noninvasive and timely tracking of physiological information in telemedicine healthcare.Meticulously building bionic-sensitive moieties is vital for designing efficient electronic skin with advanced cognitive functionalities to pluralistically capture external stimuli.However,realistic mimesis,both in the skin’s three-dimensional interlocked hierarchical structures and synchronous encoding multistimuli information capacities,remains a challenging yet vital need for simplifying the design of flexible logic circuits.Herein,we construct an artificial epidermal device by in situ growing Cu_(3)(HHTP)_(2) particles onto the hollow spherical Ti_(3)C_(2)T_(x) surface,aiming to concurrently emulate the spinous and granular layers of the skin’s epidermis.The bionic Ti_(3)C_(2)T_(x)@Cu_(3)(HHTP)_(2) exhibits independent NO_(2) and pressure response,as well as novel functionalities such as acoustic signature perception and Morse code-encrypted message communication.Ultimately,a wearable alarming system with a mobile application terminal is self-developed by integrating the bimodular senor into flexible printed circuits.This system can assess risk factors related with asthmatic,such as stimulation of external NO_(2) gas,abnormal expiratory behavior and exertion degrees of fingers,achieving a recognition accuracy of 97.6%as assisted by a machine learning algorithm.Our work provides a feasible routine to develop intelligent multifunctional healthcare equipment for burgeoning transformative telemedicine diagnosis.展开更多
Elucidating the inherent origins of the sluggish hydrogen evolution reaction(HER)kinetics in alkaline media and developing high-performance electrocatalysts are fundamental for the advances of conventional alkaline wa...Elucidating the inherent origins of the sluggish hydrogen evolution reaction(HER)kinetics in alkaline media and developing high-performance electrocatalysts are fundamental for the advances of conventional alkaline water electrolyzers and emerging anion exchange membrane(AEM)electrolyzers.Here we present a facile electrochemical modification strategy for the synthesis of bi-component Co–Mo_((18%))/A-Co(OH)_(2)catalyst toward efficient HER catalysis in alkaline media.Porous Co–Mo alloys with adjustable Mo/Co atomic ratio are first prepared by H2-assisted cathodic electrodeposition.By virtue of the appropriate electronic structure and hydrogen binding energy,Co–Mo_((18%))is the most HER active among the alloys and is further activated by a constant-current electrochemical modification process.Physical characterizations reveal the formation of amorphous Co(OH)_(2)nanoparticles on the surface.Electrokinetic analysis combined with theoretical calculations reveal that the in-situ formed Co(OH)_(2)can efficiently promote the water dissociation,resulting in accelerated Volmer-step kinetics.As a result,the Co–Mo_((18%))/A-Co(OH)_(2)simultaneously achieves the optimization of the two factors dominating alkaline HER activity,i.e.,water dissociation and hydrogen adsorption/desorption via the bifunctional synergy of the bi-components.The high HER activity(η10 of 47 mV at 10 mA cm^(-2))of Co–Mo_((18%))/A-Co(OH)_(2)is close to benchmark Pt/C catalyst and comparable or superior to the most active non-noble metal catalysts.展开更多
WC-10Co cemented carbides with finer WC and narrower grain size distributions are produced by using(Cr,V)_(2)(C,N)as grain growth inhibitors.As a result,with the increase of(Cr_(0.9),V_(0.1))_(2)(C,N)and(V_(0.9),Cr_(0...WC-10Co cemented carbides with finer WC and narrower grain size distributions are produced by using(Cr,V)_(2)(C,N)as grain growth inhibitors.As a result,with the increase of(Cr_(0.9),V_(0.1))_(2)(C,N)and(V_(0.9),Cr_(0.1))_(2)(C,N),the grains size of WC and mean free path of Co phase decrease,and adjacency of WC increases.Refinement and homogenization of grains enhance the transverse rupture strength(TRS)and the hardness.Meanwhile,the deflection and bridging of cracks keep the fracture toughness at a respectable level.The WC-10Co-0.6(Cr_(0.9),V_(0.1))_(2)(C,N)-0.025(V_(0.9),Cr_(0.1))_(2)(C,N)cemented carbides exhibit excellent comprehensive mechanical properties with the TRS of 4602.6 MPa,hardness of 1835 kg/mm^(2),and fracture toughness of 10.39 MPa·m^(1/2),respectively.However,the large pores are caused by excess N larger than 0.03 wt%and deteriorates the mechanical properties.We provide a new approach to WC-Co cemented carbides preparation with a narrow grain size distribution by adding novel grain growth inhibitors.展开更多
基金Funded by the Science and Technology Bureau of Chengdu City(No.2022-YF05-02119-SN)。
文摘A series of tungstate red phosphors K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)were successfully prepared by sol-gel method,and the effects of the introduction of Li~+and SO_(4)^(2-)on the fluorescence intensity and thermal quenching properties of the prepared K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)phosphors were investigated.The X-ray diffraction data show that the prepared(Li^(+)and SO_(4)^(2-))-doped KEu(WO_(4))_(2)phosphors have a monoclinic tetragonal structure.In addition,the emission intensities of all the observed emission peaks change significantly with the increase of Li~+doping concentration,especially the intensity of the emission peaks at 615 nm fluctuated significantly and reached the maximum at x=0.3 and y=0.2.The K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)phosphors are found to have the highest fluorescence intensity at x=0.3 and y=0.2.Moreover,the K_(0.7)Li_(0.3)Eu(WO_(4))_(1.8)(SO_(4))_(0.2)phosphor has better thermal quenching properties and luminescence efficiency,and the experimental results indicates that the fluorescence intensity and thermal burst performance of KEu(WO_(4))_(2)red phosphor could be effectively improved by using low-cost bionic doping of Li^(+)and SO_(4)^(2-).
基金This work was supported by the National Key R&D Program of China(2021YFD1900700)the National Natural Science Foundation of China(52179046).
文摘The combined effects of straw incorporation(SI)and polymer-coated urea(PCU)application on soil ammonia(NH_(3))and nitrous oxide(N_(2)O)emissions from agricultural fields have not been comprehensively evaluated in Northwest China.We conducted a two-year field experiment to assess the effects of combining SI with either uncoated urea(U)or PCU on soil NH_(3)emissions,N_(2)O emissions,winter wheat yields,yield-scaled NH_(3)(/NH_(3)),and yield-scaled N_(2)O(/N_(2)O).Five treatments were investigated,no nitrogen(N)fertilizer(N_(0)),U application at 150 kg N ha-1 with and without SI(SI+U and S_(0)+U),and PCU application at 150 kg N ha^(-1) with and without SI(SI+PCU and S_(0)+PCU).The results showed that the NH_(3);emissions increased by 20.98-34.35%following Sl compared to straw removal,mainly due to increases in soil ammonium(NH_(4)^(+)-N)content and water-flled pore space(WFPS).SI resulted in higher N_(2)O emissions than under the So scenario by 13.31-49.23%due to increases in soil inorganic N(SIN)contents,WFPS,and soil microbial biomass.In contrast,the PCU application reduced the SIN contents compared to the U application,reducing the NH_(3)and N_(2)O emissions by 45.99-58.07 and 18.08-53.04%,respectively.Moreover,no significant positive effects of the SI or PCU applications on the winter wheat yield were observed.The lowest /NH_(3) and /N_(2)O values were observed under the S_(0)+PCU and SI+PCU treatments.Our results suggest that single PCU applications and their combination with straw are the optimal agricultural strategies for mitigating gaseous N emissions and maintaining optimal winter wheat yields in Northwest China.
基金supported by the National Key Research and Development Program of China(2021YFB4001301)the Science and Technology Commission of Shanghai Municipality(21DZ1208600)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(SL2021ZD105)。
文摘The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction(ORR)compared to the disordered atomic structures in ordinary solid-solution alloy NPs.Accordingly,through a facile and scalable synthetic method,a series of carbon-supported ultrafine Pt_3Co_(x)Mn_(1-x)ternary INPs are prepared in this work,which possess the"skin-like"ultrathin Pt shells,the ordered L1_(2) atomic structure,and the high-even dispersion on supports(L1_(2)-Pt_3Co_(x)Mn_(1-x)/~SPt INPs/C).Electrochemical results present that the composition-optimized L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C exhibits the highest electrocata lytic activity among the series,which are also much better than those of the pristine ultrafine Pt/C.Besides,it also has a greatly enhanced electrochemical stability.In addition,the effects of annealing temperature and time are further investigated.More importantly,such superior ORR electrocatalytic performance of L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C are also well demonstrated in practical fuel cells.Physicochemical characterization analyses further reveal the major origins of the greatly enhanced ORR electrocata lytic performance:the Pt-Co-Mn alloy-induced geometric and ligand effects as well as the extremely high L1_(2) atomic-ordering degree.This work not only successfully develops a highly active and stable ordered ternary intermetallic ORR electrocatalyst,but also elucidates the corresponding"structure-function"relationship,which can be further applied in designing other intermetallic(electro)catalysts.
基金supported by the National Natural Science Foundation of China(Grant Nos.U22A20184,52250077,and 52272080)the Jilin Province Natural Science Foundation of China(No.20220201093GX)+2 种基金the Fundamental Research Funds for the Central Universitiessupported by the National Research Foundation of Korea(2018R1A3B1052702 to JSK)the Starting growth Technological R&D Program(TIPS Program,No.S3201803,2021,MW)funded by the Ministry of SMEs and Startups(MSS,Korea).
文摘The rising flexible and intelligent electronics greatly facilitate the noninvasive and timely tracking of physiological information in telemedicine healthcare.Meticulously building bionic-sensitive moieties is vital for designing efficient electronic skin with advanced cognitive functionalities to pluralistically capture external stimuli.However,realistic mimesis,both in the skin’s three-dimensional interlocked hierarchical structures and synchronous encoding multistimuli information capacities,remains a challenging yet vital need for simplifying the design of flexible logic circuits.Herein,we construct an artificial epidermal device by in situ growing Cu_(3)(HHTP)_(2) particles onto the hollow spherical Ti_(3)C_(2)T_(x) surface,aiming to concurrently emulate the spinous and granular layers of the skin’s epidermis.The bionic Ti_(3)C_(2)T_(x)@Cu_(3)(HHTP)_(2) exhibits independent NO_(2) and pressure response,as well as novel functionalities such as acoustic signature perception and Morse code-encrypted message communication.Ultimately,a wearable alarming system with a mobile application terminal is self-developed by integrating the bimodular senor into flexible printed circuits.This system can assess risk factors related with asthmatic,such as stimulation of external NO_(2) gas,abnormal expiratory behavior and exertion degrees of fingers,achieving a recognition accuracy of 97.6%as assisted by a machine learning algorithm.Our work provides a feasible routine to develop intelligent multifunctional healthcare equipment for burgeoning transformative telemedicine diagnosis.
基金supported by the National Natural Science Foundation of China(No.51771037)Low Carbon Energy Research Funding Initiative(No.SC22/22-71151E).
文摘Elucidating the inherent origins of the sluggish hydrogen evolution reaction(HER)kinetics in alkaline media and developing high-performance electrocatalysts are fundamental for the advances of conventional alkaline water electrolyzers and emerging anion exchange membrane(AEM)electrolyzers.Here we present a facile electrochemical modification strategy for the synthesis of bi-component Co–Mo_((18%))/A-Co(OH)_(2)catalyst toward efficient HER catalysis in alkaline media.Porous Co–Mo alloys with adjustable Mo/Co atomic ratio are first prepared by H2-assisted cathodic electrodeposition.By virtue of the appropriate electronic structure and hydrogen binding energy,Co–Mo_((18%))is the most HER active among the alloys and is further activated by a constant-current electrochemical modification process.Physical characterizations reveal the formation of amorphous Co(OH)_(2)nanoparticles on the surface.Electrokinetic analysis combined with theoretical calculations reveal that the in-situ formed Co(OH)_(2)can efficiently promote the water dissociation,resulting in accelerated Volmer-step kinetics.As a result,the Co–Mo_((18%))/A-Co(OH)_(2)simultaneously achieves the optimization of the two factors dominating alkaline HER activity,i.e.,water dissociation and hydrogen adsorption/desorption via the bifunctional synergy of the bi-components.The high HER activity(η10 of 47 mV at 10 mA cm^(-2))of Co–Mo_((18%))/A-Co(OH)_(2)is close to benchmark Pt/C catalyst and comparable or superior to the most active non-noble metal catalysts.
基金Funded by the 2021 Strategic Cooperation Project between Sichuan University and The People's Government of Zigong(No.2021CDZG-1)Major Science and Technology Research Projects of Panxi,Sichuan Province(No.2022PXZB-04)。
文摘WC-10Co cemented carbides with finer WC and narrower grain size distributions are produced by using(Cr,V)_(2)(C,N)as grain growth inhibitors.As a result,with the increase of(Cr_(0.9),V_(0.1))_(2)(C,N)and(V_(0.9),Cr_(0.1))_(2)(C,N),the grains size of WC and mean free path of Co phase decrease,and adjacency of WC increases.Refinement and homogenization of grains enhance the transverse rupture strength(TRS)and the hardness.Meanwhile,the deflection and bridging of cracks keep the fracture toughness at a respectable level.The WC-10Co-0.6(Cr_(0.9),V_(0.1))_(2)(C,N)-0.025(V_(0.9),Cr_(0.1))_(2)(C,N)cemented carbides exhibit excellent comprehensive mechanical properties with the TRS of 4602.6 MPa,hardness of 1835 kg/mm^(2),and fracture toughness of 10.39 MPa·m^(1/2),respectively.However,the large pores are caused by excess N larger than 0.03 wt%and deteriorates the mechanical properties.We provide a new approach to WC-Co cemented carbides preparation with a narrow grain size distribution by adding novel grain growth inhibitors.