期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Review on Technologies for the Use of CO2 as a Working Fluid in Refrigeration and Power Cycles
1
作者 Orelien T. Boupda Hyacinthe D. Tessemo +3 位作者 Isidore B. Nkounda Fongang Francklin G. Nyami Frederic Lontsi Thomas Djiako 《Energy and Power Engineering》 2024年第6期217-256,共40页
The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its ther... The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented. 展开更多
关键词 Refrigeration cycle Power cycle System Performance transcritical co2 cycles Working Fluid
下载PDF
Theoretical Study on CO_2 Transcritical Cycle Combined Ejector Cycle Refrigeration System
2
作者 卢苇 马一太 +1 位作者 李敏霞 查世彤 《Transactions of Tianjin University》 EI CAS 2003年第4期316-320,共5页
Chlorofluorocarbons(CFCs) or hydrochlorofluorocarbons(HCFCs) are as main refrigerants used in traditional refrigeration systems driven by electricity from burning fossil fuels, which is regarded as one of the major re... Chlorofluorocarbons(CFCs) or hydrochlorofluorocarbons(HCFCs) are as main refrigerants used in traditional refrigeration systems driven by electricity from burning fossil fuels, which is regarded as one of the major reasons for ozone depletion (man-made refrigerants emission) and global warming (CO 2 emission). So people pay more and more attention to natural refrigerants and energy saving technologies. An innovative system combining CO 2 transcritical cycle with ejector cycle is proposed in this paper. The CO 2 compression sub-cycle is powered by electricity with the characteristics of relatively high temperature in the gas cooler (defined as an intercooler by the proposed system). In order to recover the waste heat, an ejector sub-cycle operating with the natural refrigerants (NH 3, H 2O) is employed. The two sub-cycles are connected by an intercooler. This combined cycle joins the advantages of the two cycles together and eliminates the disadvantages. The influences of the evaporation temperature in CO 2 compression sub-cycle, the evaporation temperature in the ejector sub-cycle, the temperature in the intercooler and the condensation temperature in the proposed system performance are discussed theoretically in this study. In addition, some unique features of the system are presented. 展开更多
关键词 heat pump co 2 transcritical cycle EJECTOR natural refrigerants
下载PDF
Component Exergy Analysis of Solar Powered Transcritical CO_2 Rankine Cycle System 被引量:6
3
作者 Xiaojuan Li Xinrong Zhang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2011年第3期195-200,共6页
In this paper,exergy analysis method is developed to assess a Rankine cycle system,by using supercritical CO2 as working fluid and powered by solar energy.The proposed system consists of evacuated solar collectors,thr... In this paper,exergy analysis method is developed to assess a Rankine cycle system,by using supercritical CO2 as working fluid and powered by solar energy.The proposed system consists of evacuated solar collectors,throttling valve,high-temperature heat exchanger,low-temperature heat exchanger,and feed pump.The system is designed for utilize evacuated solar collectors to convert solar energy into mechanical energy and hence electricity.In order to investigate and estimate exergy performance of this system,the energy,entropy,exergy balances are developed for the components.The exergy destructions and exergy efficiency values of the system components are also determined.The results indicate that solar collector and high temperature heat exchanger which have low exergy efficiencies contribute the largest share to system irreversibility and should be the optimization design focus to improve system exergy effectiveness.Further,exergy analysis is a useful tool in this regard as it permits the performance of each process to be assessed and losses to be quantified.Exergy analysis results can be used in design,optimization,and improvement efforts. 展开更多
关键词 transcritical co2 Rankine cycle Solar energy Solar collector component exergy analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部