An In2O3 supported nickel catalyst has been prepared by wet chemical reduction with sodium borohydride(NaBH4) as a reducing agent for selective hydrogenation of carbon dioxide to methanol. Highly dispersed Ni species ...An In2O3 supported nickel catalyst has been prepared by wet chemical reduction with sodium borohydride(NaBH4) as a reducing agent for selective hydrogenation of carbon dioxide to methanol. Highly dispersed Ni species with intense Ni-In2O3 interaction and enhanced oxygen vacancies have been achieved.The highly dispersed Ni species serve as the active sites for hydrogen activation and hydrogen spillover.Abundant H adatoms are thereby generated for the oxygen vacancy creation on the In2O3 surface. The enhanced surface oxygen vacancies further lead to improved CO2 conversion. As a result, an effective synergy between the active Ni sites and surface oxygen vacancies on In2O3 causes a superior catalytic performance for CO2 hydrogenation with high methanol selectivity. Carbon monoxide is the only by product detected. The formation of methane can be ignored. When the reaction temperature is lower than 225 ℃,the selectivity of methanol is 100%. It is higher than 64% at the temperature range between 225 ℃ and 275 ℃. The methanol selectivity is still higher than 54% at 300 ℃ with a CO2 conversion of 18.47% and a methanol yield of 0.55 gMeOHg-1cath-1(at 5 MPa). The activity of Ni/In2O3 is higher than most of the reported In2O3-based catalysts.展开更多
A highly active Cu/Zn/Al/Zr fibrous catalyst was developed for methanol synthesis from CO2 hydrogenation. Various factors that affect the activity of the catalyst, including the reaction temperature, pressure and spac...A highly active Cu/Zn/Al/Zr fibrous catalyst was developed for methanol synthesis from CO2 hydrogenation. Various factors that affect the activity of the catalyst, including the reaction temperature, pressure and space velocity, were investigated. The kinetic parameters in Graaf's kinetic model for methanol synthesis were obtalned. A quasi-stable economical process for CO2 hydrogenation through CO circulation was simulated and higher methanol yield was obtained.展开更多
A series of composite catalysts were prepared by the wet mixing method, and the mass ratio of CuO-ZnO-Al2O3-ZrO2 component to HZSM-5 zeolite (molar ratio of SiO2 to Al2O3 being 25) was 2:1. The CuO-ZnO-Al2O3-ZrO2 ...A series of composite catalysts were prepared by the wet mixing method, and the mass ratio of CuO-ZnO-Al2O3-ZrO2 component to HZSM-5 zeolite (molar ratio of SiO2 to Al2O3 being 25) was 2:1. The CuO-ZnO-Al2O3-ZrO2 (CuO/ZnO/Al2O3=3/6/1 by weight) component was prepared by a modified 'two-step' co-precipitation method. The effects of ZrO2 on the performance of CuO-ZnO-Al2O3/HZSMo5 catalyst for dimethyl ether synthesis from CO2 hydrogenation were investigated. It was found that ZrO2 improved the properties of CuO-ZnO-Al2O3/HZSM-5 as a structural promoter.展开更多
A series of CuO/Ce1-xZrxO2 catalysts(x=0.2,0.4,0.6 and 0.8)are applied to elaborate the effect of the Zr/Ce ratio on the catalytic performance of CO2 hydrogenation to CH3OH.The best catalytic performance is achieved w...A series of CuO/Ce1-xZrxO2 catalysts(x=0.2,0.4,0.6 and 0.8)are applied to elaborate the effect of the Zr/Ce ratio on the catalytic performance of CO2 hydrogenation to CH3OH.The best catalytic performance is achieved with CuO/Ce0.4Zr0.6O2,exhibiting XCO2=13.2%and YCH3OH=9.47%(T=280℃,P=3 MPa).The formation of dispersed surface CuO species and larger number of oxygen vacancies are detected over CuO/Ce0.4Zr0.6O2 due to stronger interaction between CuO and Ce0.4Zr0.6O2,resulting in the superior activation ability for H2 and CO2 respectively.Additionally,the evidence is provided by in situ DRIFTS under the activity test pressure(3 MPa)that bi/m-HCOO* species are preferable for accumulating over ceria-rich(CuO/Ce0.6Zr0.4O2 and CuO/Ce0.8Zr0.2O2)catalysts while zirconia-rich(CuO/Ce0.4Zr0.6O2 and CuO/Ce0.2Zr0.8O2)catalysts are benefit to encourage the transformation of bi/m-HCOO* species to CH3OH.The abundant population and high activity of intermediate species over CuO/Ce0.4Zr0.6O2 give a strong positive effect on the catalytic performance.展开更多
Light illumination has been widely used to promote activity and selectivity of traditional thermal catalysts. Nevertheless, the role of light irradiation during catalytic reactions is not well understood. In this work...Light illumination has been widely used to promote activity and selectivity of traditional thermal catalysts. Nevertheless, the role of light irradiation during catalytic reactions is not well understood. In this work, Pt/Al2 O3 prepared by wet impregnation was used for photothermal CO2 hydrogenation, and it showed a photothermal effect. Hence, operando diffuse reflectance infrared Fourier-transform spectroscopy and density functional theory calculations were conducted on Pt/Al2 O3 to gain insights into the reaction mechanism. The results indicated that CO desorption from Pt sites including step sites(Ptstep) or/and terrace site(Ptterrace) is an important step during CO2 hydrogenation to free the active Pt sites. Notably, visible light illumination and temperature affected the CO desorption in different ways. The calculated adsorption energy of CO on Ptstep and Ptterrace sites was-1.24 and-1.43 e V, respectively. Hence, CO is more strongly bound to the Ptstep sites. During heating in the dark, CO preferentially desorbs from the Ptterrace site. However, the additional light irradiation facilitates transfer of CO from the Ptstep to Ptterrace sites and its subsequent desorption from the Ptterrace sites, thus promoting the CO2 hydrogenation.展开更多
In the present work, different silica-based supported cobalt (Co) catalysts were synthesized and used for CO2 hydrogenation for methanation. Different supports, such as SSP, MCM-41, TiSSP and TiMCM were used to prep...In the present work, different silica-based supported cobalt (Co) catalysts were synthesized and used for CO2 hydrogenation for methanation. Different supports, such as SSP, MCM-41, TiSSP and TiMCM were used to prepare Co catalysts with 20 wt% Co loading. The supports and catalysts were characterized by means of N2 physisorption, XRD, SEM/EDX, XPS, TPR and CO chemisorption. It is found that after calcination of catalysts, Ti is present in the form of anatase. The introduction of Ti plays important roles in the properties of Co catalysts by:(i) facilitating the reduction of Co oxides species which are strongly interacted with support, (ii) preventing the formation of silicate compounds, and (iii) inhibiting the RWGS reaction. Based on CO2 hydrogenation, the CoTiMCM catalyst exhibites the highest activity and stability.展开更多
Catalytic conversion of COinto chemicals and fuels is an alternative to alleviate climate change and ocean acidification.The catalytic reduction of COby Hcan lead to the formation of various products:carbon monoxide,c...Catalytic conversion of COinto chemicals and fuels is an alternative to alleviate climate change and ocean acidification.The catalytic reduction of COby Hcan lead to the formation of various products:carbon monoxide,carboxylic acids,aldehydes,alcohols and hydrocarbons.In this paper,a comprehensive thermodynamics analysis of COhydrogenation is conducted using the Gibbs free energy minimization method.The results show that COreduction to CO needs a high temperature and H/COratio to achieve a high COconversion.However,synthesis of methanol from COneeds a relatively high pressure and low temperature to minimize the reverse water-gas shift reaction.Direct COhydrogenation to formic acid or formaldehyde is thermodynamically limited.On the contrary,production of CHfrom COhydrogenation is the thermodynamically easiest reaction with nearly 100%CH4 yield at moderate conditions.In addition,complex reactions with more than one product are also calculated in this work.Among the considered carboxylic acids(HCOOH,CHCOOH and CHCOOH),propionic acid dominates in the product stream(selectivity above 90%).The same trend can also be found in the hydrogenation of COto aldehydes and alcohols with the major product of propionaldehyde and butanol,respectively.In the process of COhydrogenation to alkenes,low temperature,high pressure,and high Hpartial pressure favor the COconversion.CHis the most thermodynamically favorable among all considered alkynes under different temperatures and pressures.The thermodynamic calculations are validated with experimental results,suggesting that the Gibbs free energy minimization method is effective for thermodynamically understanding the reaction network involved in the COhydrogenation process,which is helpful for the development of high-performance catalysts.展开更多
Cu/ZrO2/SiO2 are efficient catalysts for the selective hydrogenation of CO2 to CH3OH. In order to understand the role of ZrO2 in these mixed-oxides based catalysts, in situ X-ray absorption spectroscopy has been carri...Cu/ZrO2/SiO2 are efficient catalysts for the selective hydrogenation of CO2 to CH3OH. In order to understand the role of ZrO2 in these mixed-oxides based catalysts, in situ X-ray absorption spectroscopy has been carried out on the Cu and Zr K-edge. Under reaction conditions, Cu remains metallic, while Zr is present in three types of coordination environment associated with 1) bulk ZrO2, 2) coordinatively saturated and 3) unsaturated Zr(Ⅳ) surface sites. The amount of coordinatively unsaturated Zr surface sites can be quantified by linear combination fit of reference X-Ray absorption near edge structure (XANES) spectra and its amount correlates with CH3OH formation rates, thus indicating the importance of Zr(Ⅳ) Lewis acid surface sites in driving the selectivity toward CH3OH. This finding is consistent with the proposed mechanism, where CO2 is hydrogenated at the interface between the Cu nanoparticles that split H2 and Zr(Ⅳ) surface sites that stabilizes reaction intermediates.展开更多
Potassium promoted iron–zinc catalysts prepared by co-precipitation method(C–Fe–Zn/K),solvothermal method(S–Fe–Zn/K)and hydrothermal method(H–Fe–Zn/K)could selectively convert CO_2to light olefins,respectively....Potassium promoted iron–zinc catalysts prepared by co-precipitation method(C–Fe–Zn/K),solvothermal method(S–Fe–Zn/K)and hydrothermal method(H–Fe–Zn/K)could selectively convert CO_2to light olefins,respectively.The physicochemical properties of the obtained catalysts were determined by SEM,N_2physisorption,XRD,H_2-TPR,CO_2-TPD and XPS measurements.The results demonstrated that preparation methods had great influences on the morphology,phase structures,reduction and adsorption behavior,and hence the catalytic performance of the catalysts.The samples prepared by hydrothermal and co-precipitation method generated small uniform particles and led to lower specific surface area.In contrast,microspheres with larger specific surface area were formed by self-assembly of nanosheets using solvothermal method.ZnFe_2O_4was the only detectable phase in the fresh C–2Fe–1Zn/K,S–3Fe–1Zn/K and S–2Fe–1Zn/K samples.ZnFe_2O_4and ZnO co-existed with increasing Zncontent in S–1Fe–1Zn/K sample,while ZnO and Fe_2O_3could be observed over H–2Fe–1Zn/K sample.All the used samples contained Fe_3O_4,ZnO and Fe_5C_2.The peak intensity of ZnO was strong in the AR-H–2Fe–1Zn/K sample while it was the lowest in the AR-C–2Fe–1Zn/K sample after reaction.The formation of ZnFe_2O_4increased the interaction between iron and zinc for C–2Fe–1Zn/K and S–Fe–Zn/K samples,causing easier reduction of Fe_2O_3to Fe_3O_4.The surface basicity of the sample prepared by co-precipitation method was much more than that of the other two methods.During CO_2hydrogenation,all the catalysts showed good activity and olefin selectivity.The CO selectivity was increased with increasing Zncontent over S–Fe–Zn/K samples.H–2Fe–1Zn/K catalyst preferred to the production of C_5^+hydrocarbons.CO_2conversion of 54.76%and C_2~=–C_4~=contents of 57.38%were obtained on C–2Fe–1Zn/K sample,respectively.展开更多
A copper-ceria solid solution and ceria-supported copper catalysts were prepared and used for the catalytic hydrogenation of CO2 to CH3OH.According to site-specific classification and quantitative analyses(X-ray diffr...A copper-ceria solid solution and ceria-supported copper catalysts were prepared and used for the catalytic hydrogenation of CO2 to CH3OH.According to site-specific classification and quantitative analyses(X-ray diffraction,Raman spectroscopy,X-ray photoelectron spectroscopy,H2 temperature-programmed reduction,and CO adsorption),the interfaces of the prepared catalysts were classified as Cu incorporated into ceria(Cu-Ov-Cex),dispersed Cu O(D-Cu O-Ce O2),and bulk Cu O(B-Cu O-Ce O2)over the Ce O2 surface.These results,together with those of activity tests,showed that the Cu-Ov-Cex species was closely related to the CO2 hydrogenation activity and resulted in a much higher turnover frequency of CH3OH production than that observed with the D-Cu O-Ce O2 and B-Cu O-Ce O2 species.Thus,the copper-ceria solid solution exhibited improved activity due to the higher Cu-Ov-Cex fraction.展开更多
Methanol synthesis from hydrogenation of CO2 is investigated over Cu/ZnO/Al2O3 catalysts prepared by decomposition of M(Cu,Zn)-ammonia complexes (DMAC) at various temperatures.The catalysts were characterized in d...Methanol synthesis from hydrogenation of CO2 is investigated over Cu/ZnO/Al2O3 catalysts prepared by decomposition of M(Cu,Zn)-ammonia complexes (DMAC) at various temperatures.The catalysts were characterized in detail,including X-ray diffraction,N2 adsorption-desorption,N2O chemisorption,temperature-programmed reduction and evolved gas analyses.The influences of DMAC temperature,reaction temperature and specific Cu surface area on catalytic performance are investigated.It is considered that the aurichalcite phase in the precursor plays a key role in improving the physiochemical properties and activities of the final catalysts.The catalyst from rich-aurichalcite precursor exhibits large specific Cu surface area and high space time yield of methanol (212 g/(Lcat·h);T=513 K,p=3MPa,SV=12000 h-1).展开更多
The Co3O4 and Zr-,Ce-,and La-Co3O4 catalysts were prepared,characterized,and applied to produce CH4 from CO2 catalytic hydrogenation in low temperature as 140–220℃.The results indicated that the addition of Zr,Ce,or...The Co3O4 and Zr-,Ce-,and La-Co3O4 catalysts were prepared,characterized,and applied to produce CH4 from CO2 catalytic hydrogenation in low temperature as 140–220℃.The results indicated that the addition of Zr,Ce,or La to the Co3O4 decreased the crystallite sizes of Co and the outer-shell electron density of Co^3+,and increased the specific surface area,which would provide more active sites for the CO2 methanation.Especially,the addition of Zr also changed the reducing state of Co3O4 via an obvious change in the interaction between Co3O4 and ZrO2.Furthermore,Zr doped into the Co3O4 increased the basic intensity of the weak and medium basic sites,as well as the amount of Lewis acid sites,and Bronsted acid sites were also found on the Zr-Co3O4 surface.The introduction of Zr,Ce,or La favored the production of CH4,and the Zr-Co3O4catalyst exhibited the highest CO2 conversion(58.2%)and CH4 selectivity(100%)at 200℃,and 0.5 MPa with a gaseous hourly space velocity of 18,000 ml·g^-1(cat)·h^-1,and the catalytic activity of CO2methanation for the Zr-,Ce-,and La-Co3O4 exhibited more stable than Co3O4 in a 20-h reaction.展开更多
A series of Ru/FeOx catalysts were synthesized for the selective hydrogenation of CO2to CO.Detailed characterizations of the catalysts through X‐ray diffraction,X‐ray photoelectron spectroscopy,transmission electron...A series of Ru/FeOx catalysts were synthesized for the selective hydrogenation of CO2to CO.Detailed characterizations of the catalysts through X‐ray diffraction,X‐ray photoelectron spectroscopy,transmission electron microscopy,and temperature‐programmed techniques were performed to directly monitor the surface chemical properties and the catalytic performance to elucidate the reaction mechanism.Highly dispersed Ru species were observed on the surface of FeOx regardless of the initial Ru loading.Varying the Ru loading resulted in changes to the Ru coverage over the FeOx surface,which had a significant impact on the interaction between Ru and adsorbed H,and concomitantly,the H2activation capacity via the ability for H2dissociation.FeOx having0.01%of Ru loading exhibited100%selectivity toward CO resulting from the very strong interaction between Ru and adsorbed H,which limits the desorption of the activated H species and hinders over‐reduction of CO to CH4.Further increasing the Ru loading of the catalysts to above0.01%resulted in the adsorbed H to be easily dissociated,as a result of a weaker interaction with Ru,which allowed excessive CO reduction to produce CH4.Understanding how to selectively design the catalyst by tuning the initial loading of the active phase has broader implications on the design of supported metal catalysts toward preparing liquid fuels from CO2.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences toward preparing liquid fuels from CO2.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
Metal oxide-promoted Rh-based catalysts have been widely used for CO2hydrogenation,especially for the ethanol synthesis.However,this reaction usually suffers low CO2conversion and alcohols selectivity due to the forma...Metal oxide-promoted Rh-based catalysts have been widely used for CO2hydrogenation,especially for the ethanol synthesis.However,this reaction usually suffers low CO2conversion and alcohols selectivity due to the formation of byproducts methane and CO.This paper describes an efficient vanadium oxide promoted Rh-based catalysts confined in mesopore MCM-41.The Rh-0.3VOx/MCM-41 catalyst shows superior conversion(~12%)and ethanol selectivity(~24%)for CO2hydrogenation.The promoting effect can be attributed to the synergism of high Rh dispersion by the confinement effect of MCM-41 and the formation of VOx-Rh interface sites.Experimental and theoretical results indicate the formation of til-CO at VOx-Rh interface sites is easily dissociated into*CHx,and then*CHxcan be inserted by CO to form CH3CO*,followed by CH3CO*hydrogenation to ethanol.展开更多
A series of CuO-ZnO-Al2O3-La2O3/HZSM-5 biftmctional catalysts with various La loadings for dimethyl ether (DME) directly synthesized from CO2 hydrogenation were prepared. The catalysts were characterized with N2 ads...A series of CuO-ZnO-Al2O3-La2O3/HZSM-5 biftmctional catalysts with various La loadings for dimethyl ether (DME) directly synthesized from CO2 hydrogenation were prepared. The catalysts were characterized with N2 adsorption-desorption, X-ray diffraction (XRD), H2 temperature-programmed reduction (H2-TPR), NH3 temperature-programmed desorption (NH3-TPD) and N2O titration techniques, and tested for the synthesis of DME directly from CO2 hydrogenation in a fixed-bed reactor. The results showed that the reducibility, dispersion ofbifunctional catalysts were strongly dependent on the addition of La. With the addition of appropri- ate amount of La, the crystaUite size of CuO was decreased and the dispersion of Cu on the surface was enhanced, which resulted in the increased conversion of CO2. It was also found that the selectivity to DME was related to the intensity and amount of strong acid site on the catalyst surface. The presence of La favored the production of DME, and the optimum catalytic activity was obtained when the amount of La was 2.0 wt.%.展开更多
Direct synthesis of dimethyl ether(DME)by CO2 hydrogenation has been investigated over three hybrid catalysts prepared by different methods:co-precipitation,sol-gel,and solid grinding to produce mixed Cu,ZnO,ZrO2 cata...Direct synthesis of dimethyl ether(DME)by CO2 hydrogenation has been investigated over three hybrid catalysts prepared by different methods:co-precipitation,sol-gel,and solid grinding to produce mixed Cu,ZnO,ZrO2 catalysts that were physically mixed with a commercial ferrierite(FER)zeolite.The catalysts were characterized by N2 physisorption,X-ray diffraction(XRD),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),temperature programmed desorption of CO2(CO2-TPD),temperature programmed desorption of NH3(NH3-TPD),and temperature programmed H2 reduction(H2-TPR).The results demonstrate that smaller CuO and Cu crystallite sizes resulting in better dispersion of the active phases,higher surface area,and lower reduction temperature are all favorable for catalytic activity.The reaction mechanism has been studied using in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS).Methanol appears to be formed via the bidentate-formate(b-HCOO)species undergoing stepwise hydrogenation,while DME formation occurs from methanol dehydration and reaction of two surface methoxy groups.展开更多
A series of macroporous CuO-ZnO-ZrO2 (CZZ) catalysts with different Zn/Zr ratios were successfully prepared by template method and characterized by X-ray diffraction (XRD), N2 adsorption, reactive N2O adsorption, ...A series of macroporous CuO-ZnO-ZrO2 (CZZ) catalysts with different Zn/Zr ratios were successfully prepared by template method and characterized by X-ray diffraction (XRD), N2 adsorption, reactive N2O adsorption, scanning electron microscopy (SEM), H2 temperature-pro- grammed reduction (H2-TPR), and transmission electron microscopy (TEM). The activity of the catalysts was tested for methanol synthesis from CO2 hydrogenation. It is found that the increase in the Zn/Zr ratio could lead to the sintering of the catalysts, destroying the macroporous structure integrity. The macroporous CZZ catalysts own lower Zn/Zr ratio, exhibiting a better morphology and activity. For comparison, the conventional nonporous CZZ catalysts were also investigated. The results show that the CZZ catalysts with macroporous structure own smaller particles, higher CO2 conversion, and CH3OH yield. It reveals that the macroporous structure could inhibit the growth of the par- ticle size, and the special porous structure is favorable for diffusion and penetration of CO2, which could improve the catalytic activities.展开更多
A series of La-Cu-Zn-O mixed oxide catalysts were synthesized by a co-precipitation method and calcined under different temperatures. The XRD, BET, TPR, N2 O-adsorption, XPS, SEM and TPD techniques were carried out to...A series of La-Cu-Zn-O mixed oxide catalysts were synthesized by a co-precipitation method and calcined under different temperatures. The XRD, BET, TPR, N2 O-adsorption, XPS, SEM and TPD techniques were carried out to measure the aimed catalysts. The results indicated that the chemical environment of lanthanum element changes with the increase of calcination temperature. The La2 CuO4 perovskite structure is obtained at the temperature higher than 823 K and the special copper species appear in the perovskites due to the special structure property. The catalysts with La2 CuO4 perovskite structure show higher methanol selectivity compared with the mixed copper catalyst. For the perovskite catalysts, the conversion of CO2 changes with the same tendency of the copper species ratio((Cu^(α+)+Cu^0)/(Cu(Total))%), which implied both Cu^(α+) and Cu^0 are important active sites in the perovskite catalyst for the reaction.展开更多
To fabricate high-density cobalt-based catalysts, we first synthesized SiO]C composites via a hydrother- mad method and removed C and SiO2 by two different methods, respectively. The as-prepared SiO2 and C supports th...To fabricate high-density cobalt-based catalysts, we first synthesized SiO]C composites via a hydrother- mad method and removed C and SiO2 by two different methods, respectively. The as-prepared SiO2 and C supports then reacted with cobalt acetylacetonate and N,N-dimethylformamide(DMF) under hydrothermal conditions to prepare SiO2/Co and C/Co nanocomposite catalysts. The catalysts were characterized by X-ray difffaction(XRD), scanning electron microscope(SEM), transmission electron microscopy(TEM), inductively coupled plasma mass spectrometry(ICP)~ energy dispersive X-ray fiuoresence spectrometer(EDX), and nitrogen adsorption. It was found that hexagonal cobalt nanocrystals were successfully integrated with the mesoporous silica or carbon nanotube supports. SEM and TEM results show that SiO2/Co composites with a hollow/mesoporous sphere structure and C/Co composites with a tubular structure have been successfully synthesized. Both composite samples show superpara- magnetism exhibiting an S-type hysteresis loop, which originated from the cobalt nanoparticles in the samples. Nitrogen adsorption/desorption curves suggest that the SiO2 and C supports have well-developed pore structures and large specific surface areas, and the loading and good dispersity of cobalt nanoparticles on the supports were proven by ICP and EDX. Moreover, the samples exhibited good and stable catalytic activity, denlonstrating that the two composites are suitable catalysts for Fischer-Tropsch CO2 hydrogenation.展开更多
A series of pre-reduced LaMn1–xCuxO3 (0≤x<1) catalysts for methanol synthesis from CO2 hydrogenation were prepared by a sol-gel method. The catalytic performances were strongly dependent on the copper content. XR...A series of pre-reduced LaMn1–xCuxO3 (0≤x<1) catalysts for methanol synthesis from CO2 hydrogenation were prepared by a sol-gel method. The catalytic performances were strongly dependent on the copper content. XRD investigation revealed that the single perovskite structure could be preserved after being reduced, when the substitution for Mn by Cu was less than 50%. The Cu-doped (x=0.5) LaMnO3 was much more active than the other catalysts for reaction, showing CO2 conversion up to 11.33% and methanol sele...展开更多
基金the National Natural Science Foundation of China(No.21536008 and 21621004)。
文摘An In2O3 supported nickel catalyst has been prepared by wet chemical reduction with sodium borohydride(NaBH4) as a reducing agent for selective hydrogenation of carbon dioxide to methanol. Highly dispersed Ni species with intense Ni-In2O3 interaction and enhanced oxygen vacancies have been achieved.The highly dispersed Ni species serve as the active sites for hydrogen activation and hydrogen spillover.Abundant H adatoms are thereby generated for the oxygen vacancy creation on the In2O3 surface. The enhanced surface oxygen vacancies further lead to improved CO2 conversion. As a result, an effective synergy between the active Ni sites and surface oxygen vacancies on In2O3 causes a superior catalytic performance for CO2 hydrogenation with high methanol selectivity. Carbon monoxide is the only by product detected. The formation of methane can be ignored. When the reaction temperature is lower than 225 ℃,the selectivity of methanol is 100%. It is higher than 64% at the temperature range between 225 ℃ and 275 ℃. The methanol selectivity is still higher than 54% at 300 ℃ with a CO2 conversion of 18.47% and a methanol yield of 0.55 gMeOHg-1cath-1(at 5 MPa). The activity of Ni/In2O3 is higher than most of the reported In2O3-based catalysts.
基金Supported by the National Natural Science Foundation of China (20576060, 20606021), and the Specialized Research Fund for the Doctoral Program of Higher Education (20050003030).
文摘A highly active Cu/Zn/Al/Zr fibrous catalyst was developed for methanol synthesis from CO2 hydrogenation. Various factors that affect the activity of the catalyst, including the reaction temperature, pressure and space velocity, were investigated. The kinetic parameters in Graaf's kinetic model for methanol synthesis were obtalned. A quasi-stable economical process for CO2 hydrogenation through CO circulation was simulated and higher methanol yield was obtained.
文摘A series of composite catalysts were prepared by the wet mixing method, and the mass ratio of CuO-ZnO-Al2O3-ZrO2 component to HZSM-5 zeolite (molar ratio of SiO2 to Al2O3 being 25) was 2:1. The CuO-ZnO-Al2O3-ZrO2 (CuO/ZnO/Al2O3=3/6/1 by weight) component was prepared by a modified 'two-step' co-precipitation method. The effects of ZrO2 on the performance of CuO-ZnO-Al2O3/HZSMo5 catalyst for dimethyl ether synthesis from CO2 hydrogenation were investigated. It was found that ZrO2 improved the properties of CuO-ZnO-Al2O3/HZSM-5 as a structural promoter.
基金financially supported by the National Nature Science Foundation of China (21876019, 21577014)Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17020000)the fund of the State Key Laboratory of Catalysis in DICP (N18-08)。
文摘A series of CuO/Ce1-xZrxO2 catalysts(x=0.2,0.4,0.6 and 0.8)are applied to elaborate the effect of the Zr/Ce ratio on the catalytic performance of CO2 hydrogenation to CH3OH.The best catalytic performance is achieved with CuO/Ce0.4Zr0.6O2,exhibiting XCO2=13.2%and YCH3OH=9.47%(T=280℃,P=3 MPa).The formation of dispersed surface CuO species and larger number of oxygen vacancies are detected over CuO/Ce0.4Zr0.6O2 due to stronger interaction between CuO and Ce0.4Zr0.6O2,resulting in the superior activation ability for H2 and CO2 respectively.Additionally,the evidence is provided by in situ DRIFTS under the activity test pressure(3 MPa)that bi/m-HCOO* species are preferable for accumulating over ceria-rich(CuO/Ce0.6Zr0.4O2 and CuO/Ce0.8Zr0.2O2)catalysts while zirconia-rich(CuO/Ce0.4Zr0.6O2 and CuO/Ce0.2Zr0.8O2)catalysts are benefit to encourage the transformation of bi/m-HCOO* species to CH3OH.The abundant population and high activity of intermediate species over CuO/Ce0.4Zr0.6O2 give a strong positive effect on the catalytic performance.
基金supported by the National Natural Science Foundation of China(U1862111,U1232119)Sichuan Provincial International Cooperation Project(2017HH0030)the Innovative Research Team of Sichuan Province(2016TD0011)~~
文摘Light illumination has been widely used to promote activity and selectivity of traditional thermal catalysts. Nevertheless, the role of light irradiation during catalytic reactions is not well understood. In this work, Pt/Al2 O3 prepared by wet impregnation was used for photothermal CO2 hydrogenation, and it showed a photothermal effect. Hence, operando diffuse reflectance infrared Fourier-transform spectroscopy and density functional theory calculations were conducted on Pt/Al2 O3 to gain insights into the reaction mechanism. The results indicated that CO desorption from Pt sites including step sites(Ptstep) or/and terrace site(Ptterrace) is an important step during CO2 hydrogenation to free the active Pt sites. Notably, visible light illumination and temperature affected the CO desorption in different ways. The calculated adsorption energy of CO on Ptstep and Ptterrace sites was-1.24 and-1.43 e V, respectively. Hence, CO is more strongly bound to the Ptstep sites. During heating in the dark, CO preferentially desorbs from the Ptterrace site. However, the additional light irradiation facilitates transfer of CO from the Ptstep to Ptterrace sites and its subsequent desorption from the Ptterrace sites, thus promoting the CO2 hydrogenation.
基金supported by the Thailand Research Fund(TRF)and Office of the Higher Education Commission(CHE)the National Research Council of Thailand(NRCT)NRU-CU(AM1088A)
文摘In the present work, different silica-based supported cobalt (Co) catalysts were synthesized and used for CO2 hydrogenation for methanation. Different supports, such as SSP, MCM-41, TiSSP and TiMCM were used to prepare Co catalysts with 20 wt% Co loading. The supports and catalysts were characterized by means of N2 physisorption, XRD, SEM/EDX, XPS, TPR and CO chemisorption. It is found that after calcination of catalysts, Ti is present in the form of anatase. The introduction of Ti plays important roles in the properties of Co catalysts by:(i) facilitating the reduction of Co oxides species which are strongly interacted with support, (ii) preventing the formation of silicate compounds, and (iii) inhibiting the RWGS reaction. Based on CO2 hydrogenation, the CoTiMCM catalyst exhibites the highest activity and stability.
基金funded by the National Research Foundation(NRF)Prime Minister’s Office,Singapore under its Campus for Research Excellence and Technological Enterprise(CREATE)Program
文摘Catalytic conversion of COinto chemicals and fuels is an alternative to alleviate climate change and ocean acidification.The catalytic reduction of COby Hcan lead to the formation of various products:carbon monoxide,carboxylic acids,aldehydes,alcohols and hydrocarbons.In this paper,a comprehensive thermodynamics analysis of COhydrogenation is conducted using the Gibbs free energy minimization method.The results show that COreduction to CO needs a high temperature and H/COratio to achieve a high COconversion.However,synthesis of methanol from COneeds a relatively high pressure and low temperature to minimize the reverse water-gas shift reaction.Direct COhydrogenation to formic acid or formaldehyde is thermodynamically limited.On the contrary,production of CHfrom COhydrogenation is the thermodynamically easiest reaction with nearly 100%CH4 yield at moderate conditions.In addition,complex reactions with more than one product are also calculated in this work.Among the considered carboxylic acids(HCOOH,CHCOOH and CHCOOH),propionic acid dominates in the product stream(selectivity above 90%).The same trend can also be found in the hydrogenation of COto aldehydes and alcohols with the major product of propionaldehyde and butanol,respectively.In the process of COhydrogenation to alkenes,low temperature,high pressure,and high Hpartial pressure favor the COconversion.CHis the most thermodynamically favorable among all considered alkynes under different temperatures and pressures.The thermodynamic calculations are validated with experimental results,suggesting that the Gibbs free energy minimization method is effective for thermodynamically understanding the reaction network involved in the COhydrogenation process,which is helpful for the development of high-performance catalysts.
基金E.L.,K.L.,P.W.,and S.T.are supported by the SCCER-Heat and Energy Storage program
文摘Cu/ZrO2/SiO2 are efficient catalysts for the selective hydrogenation of CO2 to CH3OH. In order to understand the role of ZrO2 in these mixed-oxides based catalysts, in situ X-ray absorption spectroscopy has been carried out on the Cu and Zr K-edge. Under reaction conditions, Cu remains metallic, while Zr is present in three types of coordination environment associated with 1) bulk ZrO2, 2) coordinatively saturated and 3) unsaturated Zr(Ⅳ) surface sites. The amount of coordinatively unsaturated Zr surface sites can be quantified by linear combination fit of reference X-Ray absorption near edge structure (XANES) spectra and its amount correlates with CH3OH formation rates, thus indicating the importance of Zr(Ⅳ) Lewis acid surface sites in driving the selectivity toward CH3OH. This finding is consistent with the proposed mechanism, where CO2 is hydrogenated at the interface between the Cu nanoparticles that split H2 and Zr(Ⅳ) surface sites that stabilizes reaction intermediates.
基金Supports by the National Natural Science Foundation of China(21666030,21366025)National First-rate Discipline Construction Project of Ningxia(NXYLXK2017A04)
文摘Potassium promoted iron–zinc catalysts prepared by co-precipitation method(C–Fe–Zn/K),solvothermal method(S–Fe–Zn/K)and hydrothermal method(H–Fe–Zn/K)could selectively convert CO_2to light olefins,respectively.The physicochemical properties of the obtained catalysts were determined by SEM,N_2physisorption,XRD,H_2-TPR,CO_2-TPD and XPS measurements.The results demonstrated that preparation methods had great influences on the morphology,phase structures,reduction and adsorption behavior,and hence the catalytic performance of the catalysts.The samples prepared by hydrothermal and co-precipitation method generated small uniform particles and led to lower specific surface area.In contrast,microspheres with larger specific surface area were formed by self-assembly of nanosheets using solvothermal method.ZnFe_2O_4was the only detectable phase in the fresh C–2Fe–1Zn/K,S–3Fe–1Zn/K and S–2Fe–1Zn/K samples.ZnFe_2O_4and ZnO co-existed with increasing Zncontent in S–1Fe–1Zn/K sample,while ZnO and Fe_2O_3could be observed over H–2Fe–1Zn/K sample.All the used samples contained Fe_3O_4,ZnO and Fe_5C_2.The peak intensity of ZnO was strong in the AR-H–2Fe–1Zn/K sample while it was the lowest in the AR-C–2Fe–1Zn/K sample after reaction.The formation of ZnFe_2O_4increased the interaction between iron and zinc for C–2Fe–1Zn/K and S–Fe–Zn/K samples,causing easier reduction of Fe_2O_3to Fe_3O_4.The surface basicity of the sample prepared by co-precipitation method was much more than that of the other two methods.During CO_2hydrogenation,all the catalysts showed good activity and olefin selectivity.The CO selectivity was increased with increasing Zncontent over S–Fe–Zn/K samples.H–2Fe–1Zn/K catalyst preferred to the production of C_5^+hydrocarbons.CO_2conversion of 54.76%and C_2~=–C_4~=contents of 57.38%were obtained on C–2Fe–1Zn/K sample,respectively.
文摘A copper-ceria solid solution and ceria-supported copper catalysts were prepared and used for the catalytic hydrogenation of CO2 to CH3OH.According to site-specific classification and quantitative analyses(X-ray diffraction,Raman spectroscopy,X-ray photoelectron spectroscopy,H2 temperature-programmed reduction,and CO adsorption),the interfaces of the prepared catalysts were classified as Cu incorporated into ceria(Cu-Ov-Cex),dispersed Cu O(D-Cu O-Ce O2),and bulk Cu O(B-Cu O-Ce O2)over the Ce O2 surface.These results,together with those of activity tests,showed that the Cu-Ov-Cex species was closely related to the CO2 hydrogenation activity and resulted in a much higher turnover frequency of CH3OH production than that observed with the D-Cu O-Ce O2 and B-Cu O-Ce O2 species.Thus,the copper-ceria solid solution exhibited improved activity due to the higher Cu-Ov-Cex fraction.
基金supported by the National Basic Research Program of China (No. 2011CB201404)the financial support of the State Key Laboratory for Oxo Synthesis and Selective Oxidation (OSSO) of China
文摘Methanol synthesis from hydrogenation of CO2 is investigated over Cu/ZnO/Al2O3 catalysts prepared by decomposition of M(Cu,Zn)-ammonia complexes (DMAC) at various temperatures.The catalysts were characterized in detail,including X-ray diffraction,N2 adsorption-desorption,N2O chemisorption,temperature-programmed reduction and evolved gas analyses.The influences of DMAC temperature,reaction temperature and specific Cu surface area on catalytic performance are investigated.It is considered that the aurichalcite phase in the precursor plays a key role in improving the physiochemical properties and activities of the final catalysts.The catalyst from rich-aurichalcite precursor exhibits large specific Cu surface area and high space time yield of methanol (212 g/(Lcat·h);T=513 K,p=3MPa,SV=12000 h-1).
基金Supported by the National Natural Science Foundation of China(21366004)Guangxi Natural Science Foundation(2016GXNSFFA380015)the Dean Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology(2016Z003)
文摘The Co3O4 and Zr-,Ce-,and La-Co3O4 catalysts were prepared,characterized,and applied to produce CH4 from CO2 catalytic hydrogenation in low temperature as 140–220℃.The results indicated that the addition of Zr,Ce,or La to the Co3O4 decreased the crystallite sizes of Co and the outer-shell electron density of Co^3+,and increased the specific surface area,which would provide more active sites for the CO2 methanation.Especially,the addition of Zr also changed the reducing state of Co3O4 via an obvious change in the interaction between Co3O4 and ZrO2.Furthermore,Zr doped into the Co3O4 increased the basic intensity of the weak and medium basic sites,as well as the amount of Lewis acid sites,and Bronsted acid sites were also found on the Zr-Co3O4 surface.The introduction of Zr,Ce,or La favored the production of CH4,and the Zr-Co3O4catalyst exhibited the highest CO2 conversion(58.2%)and CH4 selectivity(100%)at 200℃,and 0.5 MPa with a gaseous hourly space velocity of 18,000 ml·g^-1(cat)·h^-1,and the catalytic activity of CO2methanation for the Zr-,Ce-,and La-Co3O4 exhibited more stable than Co3O4 in a 20-h reaction.
基金supported by the National Natural Science Foundation of China(21476145,91645117)China Postdoctoral Science Foundation(2016M600221)~~
文摘A series of Ru/FeOx catalysts were synthesized for the selective hydrogenation of CO2to CO.Detailed characterizations of the catalysts through X‐ray diffraction,X‐ray photoelectron spectroscopy,transmission electron microscopy,and temperature‐programmed techniques were performed to directly monitor the surface chemical properties and the catalytic performance to elucidate the reaction mechanism.Highly dispersed Ru species were observed on the surface of FeOx regardless of the initial Ru loading.Varying the Ru loading resulted in changes to the Ru coverage over the FeOx surface,which had a significant impact on the interaction between Ru and adsorbed H,and concomitantly,the H2activation capacity via the ability for H2dissociation.FeOx having0.01%of Ru loading exhibited100%selectivity toward CO resulting from the very strong interaction between Ru and adsorbed H,which limits the desorption of the activated H species and hinders over‐reduction of CO to CH4.Further increasing the Ru loading of the catalysts to above0.01%resulted in the adsorbed H to be easily dissociated,as a result of a weaker interaction with Ru,which allowed excessive CO reduction to produce CH4.Understanding how to selectively design the catalyst by tuning the initial loading of the active phase has broader implications on the design of supported metal catalysts toward preparing liquid fuels from CO2.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences toward preparing liquid fuels from CO2.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
基金supported by the National Key R&D Program of China (2016YFB0600901)the National Natural Science Foundation of China (21525626, 21603159, 21676181)the Program of Introducing Talents of Discipline to Universities (B06006)
文摘Metal oxide-promoted Rh-based catalysts have been widely used for CO2hydrogenation,especially for the ethanol synthesis.However,this reaction usually suffers low CO2conversion and alcohols selectivity due to the formation of byproducts methane and CO.This paper describes an efficient vanadium oxide promoted Rh-based catalysts confined in mesopore MCM-41.The Rh-0.3VOx/MCM-41 catalyst shows superior conversion(~12%)and ethanol selectivity(~24%)for CO2hydrogenation.The promoting effect can be attributed to the synergism of high Rh dispersion by the confinement effect of MCM-41 and the formation of VOx-Rh interface sites.Experimental and theoretical results indicate the formation of til-CO at VOx-Rh interface sites is easily dissociated into*CHx,and then*CHxcan be inserted by CO to form CH3CO*,followed by CH3CO*hydrogenation to ethanol.
基金supported by the National Key Technologies R&D Program of China(2011BAC01B03)the Natural Science Foundation of Yunnan Province(2013FZ035)support by Kunming University of Science and Technology through the Fund for Testingand Analyzing(No.2010213)
文摘A series of CuO-ZnO-Al2O3-La2O3/HZSM-5 biftmctional catalysts with various La loadings for dimethyl ether (DME) directly synthesized from CO2 hydrogenation were prepared. The catalysts were characterized with N2 adsorption-desorption, X-ray diffraction (XRD), H2 temperature-programmed reduction (H2-TPR), NH3 temperature-programmed desorption (NH3-TPD) and N2O titration techniques, and tested for the synthesis of DME directly from CO2 hydrogenation in a fixed-bed reactor. The results showed that the reducibility, dispersion ofbifunctional catalysts were strongly dependent on the addition of La. With the addition of appropri- ate amount of La, the crystaUite size of CuO was decreased and the dispersion of Cu on the surface was enhanced, which resulted in the increased conversion of CO2. It was also found that the selectivity to DME was related to the intensity and amount of strong acid site on the catalyst surface. The presence of La favored the production of DME, and the optimum catalytic activity was obtained when the amount of La was 2.0 wt.%.
基金supported by the China Scholarship Council(No.201608140182)the University of Wyomingand State of Wyoming。
文摘Direct synthesis of dimethyl ether(DME)by CO2 hydrogenation has been investigated over three hybrid catalysts prepared by different methods:co-precipitation,sol-gel,and solid grinding to produce mixed Cu,ZnO,ZrO2 catalysts that were physically mixed with a commercial ferrierite(FER)zeolite.The catalysts were characterized by N2 physisorption,X-ray diffraction(XRD),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),temperature programmed desorption of CO2(CO2-TPD),temperature programmed desorption of NH3(NH3-TPD),and temperature programmed H2 reduction(H2-TPR).The results demonstrate that smaller CuO and Cu crystallite sizes resulting in better dispersion of the active phases,higher surface area,and lower reduction temperature are all favorable for catalytic activity.The reaction mechanism has been studied using in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS).Methanol appears to be formed via the bidentate-formate(b-HCOO)species undergoing stepwise hydrogenation,while DME formation occurs from methanol dehydration and reaction of two surface methoxy groups.
基金financially supported by the National Key Technologies Research & Development Program of China(No.2011BAC01B03)the National Natural Science Foundation of China(No.51304099)+1 种基金the Applied Basic Research Program of Yunnan Province(No.2013FZ035)the Testing and Analyzing Foundation of Kunming University of Science and Technology(No. 2010213)
文摘A series of macroporous CuO-ZnO-ZrO2 (CZZ) catalysts with different Zn/Zr ratios were successfully prepared by template method and characterized by X-ray diffraction (XRD), N2 adsorption, reactive N2O adsorption, scanning electron microscopy (SEM), H2 temperature-pro- grammed reduction (H2-TPR), and transmission electron microscopy (TEM). The activity of the catalysts was tested for methanol synthesis from CO2 hydrogenation. It is found that the increase in the Zn/Zr ratio could lead to the sintering of the catalysts, destroying the macroporous structure integrity. The macroporous CZZ catalysts own lower Zn/Zr ratio, exhibiting a better morphology and activity. For comparison, the conventional nonporous CZZ catalysts were also investigated. The results show that the CZZ catalysts with macroporous structure own smaller particles, higher CO2 conversion, and CH3OH yield. It reveals that the macroporous structure could inhibit the growth of the par- ticle size, and the special porous structure is favorable for diffusion and penetration of CO2, which could improve the catalytic activities.
基金Project supported by the Natural Science Foundation of Ningxia Province(NZ16003)
文摘A series of La-Cu-Zn-O mixed oxide catalysts were synthesized by a co-precipitation method and calcined under different temperatures. The XRD, BET, TPR, N2 O-adsorption, XPS, SEM and TPD techniques were carried out to measure the aimed catalysts. The results indicated that the chemical environment of lanthanum element changes with the increase of calcination temperature. The La2 CuO4 perovskite structure is obtained at the temperature higher than 823 K and the special copper species appear in the perovskites due to the special structure property. The catalysts with La2 CuO4 perovskite structure show higher methanol selectivity compared with the mixed copper catalyst. For the perovskite catalysts, the conversion of CO2 changes with the same tendency of the copper species ratio((Cu^(α+)+Cu^0)/(Cu(Total))%), which implied both Cu^(α+) and Cu^0 are important active sites in the perovskite catalyst for the reaction.
基金Supported by the Natural Science Foundation of Heilongjiang Province, China(No.B20170001), the Postdoctoral Fund of Heilongjiang Province, China(No.LBH-Z16009), the Fundamental Research Funds for the Central Universities, China(No. 2572018BC28) and the Postdoctoral Science Foundation of China(Nos.2016M591501, 2017T100218).
文摘To fabricate high-density cobalt-based catalysts, we first synthesized SiO]C composites via a hydrother- mad method and removed C and SiO2 by two different methods, respectively. The as-prepared SiO2 and C supports then reacted with cobalt acetylacetonate and N,N-dimethylformamide(DMF) under hydrothermal conditions to prepare SiO2/Co and C/Co nanocomposite catalysts. The catalysts were characterized by X-ray difffaction(XRD), scanning electron microscope(SEM), transmission electron microscopy(TEM), inductively coupled plasma mass spectrometry(ICP)~ energy dispersive X-ray fiuoresence spectrometer(EDX), and nitrogen adsorption. It was found that hexagonal cobalt nanocrystals were successfully integrated with the mesoporous silica or carbon nanotube supports. SEM and TEM results show that SiO2/Co composites with a hollow/mesoporous sphere structure and C/Co composites with a tubular structure have been successfully synthesized. Both composite samples show superpara- magnetism exhibiting an S-type hysteresis loop, which originated from the cobalt nanoparticles in the samples. Nitrogen adsorption/desorption curves suggest that the SiO2 and C supports have well-developed pore structures and large specific surface areas, and the loading and good dispersity of cobalt nanoparticles on the supports were proven by ICP and EDX. Moreover, the samples exhibited good and stable catalytic activity, denlonstrating that the two composites are suitable catalysts for Fischer-Tropsch CO2 hydrogenation.
文摘A series of pre-reduced LaMn1–xCuxO3 (0≤x<1) catalysts for methanol synthesis from CO2 hydrogenation were prepared by a sol-gel method. The catalytic performances were strongly dependent on the copper content. XRD investigation revealed that the single perovskite structure could be preserved after being reduced, when the substitution for Mn by Cu was less than 50%. The Cu-doped (x=0.5) LaMnO3 was much more active than the other catalysts for reaction, showing CO2 conversion up to 11.33% and methanol sele...