期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Superior resistance to alkali metal potassium of vanadium-based NH_(3)-SCR catalyst promoted by the solid superacid SO_(4)^(2-)-TiO_(2) 被引量:1
1
作者 Yaoyao Peng Lei Song +6 位作者 Siru Lu Ziyu Su Kui Ma Siyang Tang Shan Zhong Hairong Yue Bin Liang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期246-256,共11页
The significant decrease of acid sites caused by alkali metal poisoning is the major factor in the deactivation of commercial V_(2)O_(5)-WO_(3)/TiO_(2)NH_(3)-SCR catalysts.In this work,the solid superacid SO_(4)^(2-)-... The significant decrease of acid sites caused by alkali metal poisoning is the major factor in the deactivation of commercial V_(2)O_(5)-WO_(3)/TiO_(2)NH_(3)-SCR catalysts.In this work,the solid superacid SO_(4)^(2-)-TiO_(2) modified by sulfate radicals,was selected as the catalyst support,which showed superior potassium resistance.The physicochemical properties and K-poisoning resistance of the V_(2)O_(5)-WO_(3)/SO_(4)^(2-)-TiO_(2)(VWSTi) catalyst were carried out by XRD,BET,H2-TPR,NH3-TPD,XPS,in situ DRIFTS and TG.The results pointed out that the introduction of SO_(4)^(2-)significantly increased the NH3-SCR catalytic activity at high temperatures,with an exceptionally high NO_(x) conversion over 90% between 275℃ and 500℃.When 0.5%(mass) K_(2)O was doped on the catalysts,the catalytic performance of the traditional V_(2)O_(5)-WO_(3)/TiO_(2)(VWTi) catalyst decreased significantly,while the VWSTi catalyst could still maintain a NOxconversion over 90%in the range of 300–500℃.The characterizations suggested that the support of SO_(4)^(2-)-TiO_(2) greatly increased the number of acidic sites,thereby enhancing the adsorption capacity of the reactant NH_(3).The results above demonstrated a potential approach to achieve superior potassium resistance for NH3-SCR catalysts using solid superacid. 展开更多
关键词 Selective catalytic reduction(NH_(3)-SCR) V_(2)O_(5)-WO_(3)/TiO_(2) Solid superacid anti-poisoning ACIDITY
下载PDF
Rational design ternary platinum based electrocatalysts for effective methanol oxidation reaction 被引量:6
2
作者 Hao Tian Daoxiong Wu +9 位作者 Jing Li Junming Luo Chunman Jia Zhongxin Liu Wei Huang Qi Chen Chong Michael Shim Peilin Deng Yijun Shen Xinlong Tian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期230-235,I0007,共7页
Exploring effective, durable, and affordable electrocatalysts of methanol oxidation reaction(MOR) is of vital significance for the industrial application of direct methanol fuel cells. Herein, an efficient, general,an... Exploring effective, durable, and affordable electrocatalysts of methanol oxidation reaction(MOR) is of vital significance for the industrial application of direct methanol fuel cells. Herein, an efficient, general,and expandable method is developed to synthesis two-dimensional(2D) ternary Pt Bi M nanoplates(NPLs), in which various M(Co, Ni, Cu, Zn, Sn) is severed as the third component to the binary Pt Bi system. The MOR performance of Pt Bi M NPLs is entirely investigated, demonstrating that both the MOR activity and durability is enhanced with the introduction of the additional composition. Pt3Bi3Zn NPLs shows much higher MOR activity and stability than that of the Pt Bi counterparts, not to mention the current advanced Pt Ru/C and Pt/C catalysts. The prominent performances are attributed to the modulated electronic structure of the surface Pt in Pt Bi NPLs by the addition of Zn, resulting in a weakened affination between Pt and the adsorbed poisoning species(mainly CO) compared with Pt Bi NPLs, verified by density functional theory(DFT) calculations. In addition, the absorbed OH can be generated on the surface of Zn atom due to its favorable water activation properties, thus the CO removal on the adjacent Pt atoms is accelerated, further leading to a high activity and anti-poisoning performance of the resulting Pt_(3)Bi_(3)Zn catalyst. This work provides new insights and robust strategy for highly efficient MOR electrocatalyst with extraordinary anti-poisoning performance and stability. 展开更多
关键词 Fuel cells Ternary nanoplates DURABILITY Methanol oxidation reaction anti-poisoning
下载PDF
Alloyed Pt-Sn nanoparticles on hierarchical nitrogen-doped carbon nanocages for advanced glycerol electrooxidation
3
作者 Jietao Jiang Liqi Zhou +7 位作者 Fengfei Xu Guanghai Chen Xiaoyu Liu Zhen Shen Lijun Yang Qiang Wu Xizhang Wang Zheng Hu 《Nano Research》 SCIE EI CSCD 2024年第5期4055-4061,共7页
Glycerol is an alternative sustainable fuel for fuel cells,and efficient electrocatalyst is crucial for glycerol oxidation reaction(GOR).The promising Pt catalysts are subject to the inadequate capability of C-C bond ... Glycerol is an alternative sustainable fuel for fuel cells,and efficient electrocatalyst is crucial for glycerol oxidation reaction(GOR).The promising Pt catalysts are subject to the inadequate capability of C-C bond cleavage and the susceptibility to poisoning.Herein,Pt-Sn alloyed nanoparticles are immobilized on hierarchical nitrogen-doped carbon nanocages(hNCNCs)by convenient ethylene glycol reduction and subsequent thermal reduction.The optimal Pt_(3)Sn/hNCNC catalyst exhibits excellent GOR performance with a high mass activity(5.9 A·mg_(Pt)^(-1)),which is 2.7 and 5.4 times higher than that of Pt/hNCNC and commercial Pt/C,respectively.Such an enhancement can be mainly ascribed to the increased anti-poisoning and C-C bond cleavage capability due to the Pt_(3)Sn alloying effect and Sn-enriched surface,the high dispersion of Pt_(3)Sn active species due to N-participation,as well as the high accessibility of Pt_(3)Sn active species due to the three-dimensional(3D)hierarchical architecture of hNCNC.This study provides an effective GOR electrocatalyst and convenient approach for catalyst preparation. 展开更多
关键词 Pt_(3)Sn alloy hierarchical nitrogen-doped carbon nanocages glycerol electrooxidation anti-poisoning C-C bond cleavage
原文传递
Formic acid electro-oxidation:Mechanism and electrocatalysts design
4
作者 Tongtong Yang Shuai Hou +3 位作者 Jiaojiao Xing Changpeng Liu Junjie Ge Wei Xing 《Nano Research》 SCIE EI CSCD 2023年第3期3607-3621,共15页
As a model reaction for the electrooxidation of many small organic molecules,formic acid electrooxidation(FAEO)has aroused wide concern.The promises of direct formic acid fuel cells(DFAFC)in application further streng... As a model reaction for the electrooxidation of many small organic molecules,formic acid electrooxidation(FAEO)has aroused wide concern.The promises of direct formic acid fuel cells(DFAFC)in application further strengthen people’s attention to the related research.However,despite decades of study,the FAEO mechanism is still under debate due to the multi-electron and multi-pathway nature of the catalytic process.In this review,the progresses towards understanding the FAEO mechanism along with the developed methodology(electrochemistry,in-situ spectroscopy,and theoretical calculation and simulation)are summarized.We especially focused on the construction of anti-poisoning catalysts system based on understanding of the catalytic mechanism,with anti-poisoning catalyst design being systemically summarized.Finally,we provide a brief summarization for current challenges and future prospects towards FAEO study. 展开更多
关键词 formic acid electrooxidation MECHANISM anti-poisoning methodology in-situ technique electrocatalysts design
原文传递
Graphene aerogel supported Pt-Ni alloy as efficient electrocatalysts for alcohol fuel oxidation 被引量:4
5
作者 Xiang Ding Meng Li +3 位作者 Junling Jin Xiaobing Huang Xiang Wu Ligang Feng 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第5期2687-2691,共5页
Alcohol fuels oxidation plays a significant role in carbon sustainable cycling and high-performance cata-lyst with a strong anti-poisoning effect is desired.Herein,Pt-Ni alloy supported on the N-doped graphene aerogel... Alcohol fuels oxidation plays a significant role in carbon sustainable cycling and high-performance cata-lyst with a strong anti-poisoning effect is desired.Herein,Pt-Ni alloy supported on the N-doped graphene aerogel synthesized by simple freeze-drying and annealing was demonstrated to have such catalytic abil-ity for alcohol fuel oxidation.Pt-Ni alloy particles were found uniformly dispersed over the surface of 3D N-doped graphene aerogel.High anti-poisoning ability for CO-like intermediates oxidation was demon-strated by the CO-stripping experiment.The as-prepared catalyst was found to have outstanding catalytic performance for methanol and ethanol oxidation with high catalytic activity,stability and catalytic ki-netics.Compared to the control samples,the improved catalytic ability could be due to the presence of oxophilic Ni species and the support effect of 3D N-doped graphene aerogel that combined multi-advantages of large surface area,facile mass transfer,and abundant defects. 展开更多
关键词 PtNi Fuel cells reaction Graphene aerogel anti-poisoning effect CO-stripping
原文传递
Fabrication of amorphous PdNiCuP nanoparticles as efficient bifunctional and highly durable electrocatalyst for methanol and formic acid oxidation
6
作者 Yunwei Liu Chang Liu +5 位作者 Zelin Chen Xuerong Zheng Rui Jiang Xing Tong Yida Deng Wenbin Hu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第27期148-155,共8页
Highly active and durable electrocatalytic materials towards small molecules electro-oxidation reaction are critical to the large-scale commercial applications of direct liquid fuel cells.Unfortunately,current nanocry... Highly active and durable electrocatalytic materials towards small molecules electro-oxidation reaction are critical to the large-scale commercial applications of direct liquid fuel cells.Unfortunately,current nanocrystalline electrocatalysts normally suffer from low catalytic efficiency,severe CO poisoning and rapid activity decay.Herein,we report a novel amorphous Pd Ni Cu P catalyst synthesized with laser liquid ablation as a potential settlement to this issue.The as-obtained amorphous Pd Ni Cu P catalyst exhibits enhanced electrocatalytic performance with the mass activity of 1.61 A mg^(-1)and 737.8 m A mg^(-1)towards methanol oxidation reaction(MOR)and formic acid oxidation reaction(FAOR),respectively.Moreover,amorphous Pd Ni Cu P displays excellent operation stability and CO-poisoning resistance in both alkaline and acidic medium.P was proposed to play the decisive role for forming the amorphous structure and maintaining the catalytic stability in MOR and FAOR processes.This work provided insights for the ration design of active and durable amorphous electrocatalysts applied in direct liquid fuel cells. 展开更多
关键词 Laser ablation Amorphous catalyst anti-poisoning STABLE Methanol oxidation Formic acid oxidation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部