Based on the theory of optical scintillation induced by fluctuation of particulate concentration, a Gas Flow Velocity Measurement System (GFVMS) is proposed to measure the gas flow velocity in stack. Verification expe...Based on the theory of optical scintillation induced by fluctuation of particulate concentration, a Gas Flow Velocity Measurement System (GFVMS) is proposed to measure the gas flow velocity in stack. Verification experiments on simulation flue indicate that, for the smoothing effect of transmitting and receiving apertures, optical scintillation induced by refractive index fluctuation is very weak. When particles are added into gas flow, the standard deviation of optical scintillation increased obviously. And when the particulate number concentration exceeds 4000/m3, the GFVMS can work normally, and the variation range of measured velocities is almost the same with that of Pitot tube. Sensitivity testing results show that, GFVMS is very sensitive to velocity change. Results of outfield experiment prove that, velocities measured by GFVMS are more stable and the average velocity (7.62/s) is very close to the statistical average (7.61 m/s) of velocities measured by Pitot tube at different points along optical path.展开更多
The feasibility of flue gas desulphurization (FGD) as concrete admixture was studied. A combined concrete admixture of the thermally-treated FGD gypsum and slag powder was explored. The FGD gypsum was roasted at 200...The feasibility of flue gas desulphurization (FGD) as concrete admixture was studied. A combined concrete admixture of the thermally-treated FGD gypsum and slag powder was explored. The FGD gypsum was roasted at 200℃ for 60 min and then mixed with the slag powder to form FGD gypsum-slag powder combined admixture in which the SO3 content was 3.5wt%. Cement was partially and equivalently replaced by slag powder alone or FGD gypsum-slag powder, at concentration of 25wt%, 40wt%, and 50wt%, respectively. The setting times, hydration products, total porosity and pore size distributions of the paste were determined. The compressive strength and drying shrinkage of cement mortar and concrete were also tested. The experimental results show that, in the presence of FGD gypsum, the setting times are much slower than those of pastes in the absence of FGD gypsum. The combination of FGD gypsum and slag powder provides synergistic benefits above that of slag powder alone. The addition of FGD gypsum provides benefit by promoting ettringite formation and forms a compact microstructure, increasing the compressive strength and reduces the drying shrinkage of cement mortar and concrete.展开更多
The prevention and treatment of mercury in coal-fired power plants has always been the focus and difficulty.How to control the pollution of mercury to human body and ecological environment quickly and effectively is a...The prevention and treatment of mercury in coal-fired power plants has always been the focus and difficulty.How to control the pollution of mercury to human body and ecological environment quickly and effectively is a hot research topic nowadays.As a low cost and potential adsorbent,there is a huge space for the development of coal dry powder gasification coarse slag.In this paper,Mercury osmotic tubes are heated by water bath tank as mercury source,and the scavenging effect of adsorbent on Mercury monomer under different influence conditions is explored.The adsorbent plays an important role in adsorption of mercury monomer because of its special active sites on the surface.The reason is that the adsorbent surface is rich in carboxyl group,hydroxyl functional group,combined with mercury to form complexes.This shows that chemical adsorption facilitates the adsorption process.展开更多
To thoroughly study the extinguishing effect of a high-pressure water mist fire extinguishing system when a transformer fire occurs,a 3D experimental model of a transformer is established in this work by employing Fir...To thoroughly study the extinguishing effect of a high-pressure water mist fire extinguishing system when a transformer fire occurs,a 3D experimental model of a transformer is established in this work by employing Fire Dynamics Simulator(FDS)software.More specifically,by setting different parameters,the process of the highpressure water mist fire extinguishing system with the presence of both diverse ambient temperatures and water mist sprinkler laying conditions is simulated.In addition,the fire extinguishing effect of the employed high-pressure water mist system with the implementation of different strategies is systematically analyzed.The extracted results show that a fire source farther away fromthe centerline leads to a lower local temperature distribution.In addition,as the ambient temperature increases,the temperature above the fire source decreases,while the temperature and the concentrationof theupperflue gas layer bothdecrease.Interestingly,after thehigh-pressurewatermist sprinkler begins to operate,both the temperature distribution above the fire source and the concentration of the flue gas decrease,which indicates that the high-pressure water mist system plays the role of cooling and dust removal.By comparing various sprinkler laying methods,it is found that the lower sprinkler height has a better effect on the temperature above the fire source,the temperature of the upper flue gas layer,and the concentration of the flue gas.Moreover,when the sprinkler is spread over thewhole transformer,the cooling effect on both the temperature above the fire source and the temperature of the upper flue gas layer is good,whereas the change in the concentration of the flue gas above the fire source is not obvious compared to the case where the sprinkler is not fully spread.展开更多
In this study, the characteristics of fine particles before and after wet flue gas desulfurization(WFGD) in three coal-fired heating boilers in northern China were investigated by using a dilution-based emission sampl...In this study, the characteristics of fine particles before and after wet flue gas desulfurization(WFGD) in three coal-fired heating boilers in northern China were investigated by using a dilution-based emission sampling experimental system. The influences of the WFGD process on the mass and number concentrations as well as the chemical composition of fine particles were analyzed. The removal efficiency of desulfurization processes on particulate matter mass was 30.06%–56.25% for the three study units. The WFGD had a great influence on the size distributions of particle mass concentration and number concentration. A significant increase in the number and mass concentration of particles in the size range of 0.094–0.946 μm was observed. The watersoluble ion content accounted for a very large proportion of PM_(2.5) mass, and its proportion in PM_(2.5) increased from 28.39%–41.08% to 48.96%–61.21% after the WFGD process for the three units. The desulfurizing process also drastically increased the proportion of cation component(Ca^(2+) for unit A, Mg^(2+) for unit B, and Na+for unit C) and the proportion of SO_4^(2-) in PM_(2.5), and it increased the CE/AE values of PM_(2.5) from 0.82–0.98 to 0.93–1.27 for the three study units.展开更多
Due to a serious shortage of the coal in Tonghua, a retrofit solution of mixing warm flue gas extracted from reversing chamber into the coal pulverizing system and cold air into the hot air coal pulverizing system is ...Due to a serious shortage of the coal in Tonghua, a retrofit solution of mixing warm flue gas extracted from reversing chamber into the coal pulverizing system and cold air into the hot air coal pulverizing system is proposed so as to reduce oxygen content. At the end of the pulverizing system and medium temperature of the conveying system, dual-channel combustion burner is transformed into horizontal bias combustion burner. The measurement results show that 50% ratio of lignite blended in the 1025t/h bituminous boiler is feasibility. It is also an important technology to reduce NOx pollutant emission.展开更多
There are many factors,that affect the development of indoor fire,such as the size of the fire source,the opening or space of the room,and the nature of the combustible materials.Among them,the space of the room,has a...There are many factors,that affect the development of indoor fire,such as the size of the fire source,the opening or space of the room,and the nature of the combustible materials.Among them,the space of the room,has a significant impact on the development of a ventilation-limited fire.In this paper,the Fire Dynamics Simulator(FDS)software is used to analyze,the risk of fire initiation in the restricted ventilated compartment,when the size of vertical ventilation space is different.Through,a combination of experimental design,numerical simulation,and theoretical analysis,the changes in the level of carbon monoxide,visibility,temperature,Heat Release Rate(HRR)and,the smoke exhaust efficiency of natural smoke at different opening sizes are observed.It is observed that,when the ratio of inlet and outlet area reaches 2:1,the natural smoke exhaust effect is the best,however,the increasing in the opening size has little significance on the smoke exhaust effect.The research on the influence of smoke outlet size,will helps in the development of the law regarding fire prevention,smoke exhaust design,and fire rescue work of a building.展开更多
文摘Based on the theory of optical scintillation induced by fluctuation of particulate concentration, a Gas Flow Velocity Measurement System (GFVMS) is proposed to measure the gas flow velocity in stack. Verification experiments on simulation flue indicate that, for the smoothing effect of transmitting and receiving apertures, optical scintillation induced by refractive index fluctuation is very weak. When particles are added into gas flow, the standard deviation of optical scintillation increased obviously. And when the particulate number concentration exceeds 4000/m3, the GFVMS can work normally, and the variation range of measured velocities is almost the same with that of Pitot tube. Sensitivity testing results show that, GFVMS is very sensitive to velocity change. Results of outfield experiment prove that, velocities measured by GFVMS are more stable and the average velocity (7.62/s) is very close to the statistical average (7.61 m/s) of velocities measured by Pitot tube at different points along optical path.
基金Funded by the National Natural Science Foundation of China(Nos.51208370,51172164)the Doctoral Program of Higher Education of China(No.20110072120046)+1 种基金the Fundamental Research Funds for the Central Universities(No.0500219170)the Opening Measuring Fund of LargeApparatus of Tongji University(No.0002012011)
文摘The feasibility of flue gas desulphurization (FGD) as concrete admixture was studied. A combined concrete admixture of the thermally-treated FGD gypsum and slag powder was explored. The FGD gypsum was roasted at 200℃ for 60 min and then mixed with the slag powder to form FGD gypsum-slag powder combined admixture in which the SO3 content was 3.5wt%. Cement was partially and equivalently replaced by slag powder alone or FGD gypsum-slag powder, at concentration of 25wt%, 40wt%, and 50wt%, respectively. The setting times, hydration products, total porosity and pore size distributions of the paste were determined. The compressive strength and drying shrinkage of cement mortar and concrete were also tested. The experimental results show that, in the presence of FGD gypsum, the setting times are much slower than those of pastes in the absence of FGD gypsum. The combination of FGD gypsum and slag powder provides synergistic benefits above that of slag powder alone. The addition of FGD gypsum provides benefit by promoting ettringite formation and forms a compact microstructure, increasing the compressive strength and reduces the drying shrinkage of cement mortar and concrete.
文摘The prevention and treatment of mercury in coal-fired power plants has always been the focus and difficulty.How to control the pollution of mercury to human body and ecological environment quickly and effectively is a hot research topic nowadays.As a low cost and potential adsorbent,there is a huge space for the development of coal dry powder gasification coarse slag.In this paper,Mercury osmotic tubes are heated by water bath tank as mercury source,and the scavenging effect of adsorbent on Mercury monomer under different influence conditions is explored.The adsorbent plays an important role in adsorption of mercury monomer because of its special active sites on the surface.The reason is that the adsorbent surface is rich in carboxyl group,hydroxyl functional group,combined with mercury to form complexes.This shows that chemical adsorption facilitates the adsorption process.
基金supported by Science and Technology Projects Funded by State Grid Corporation of China (5200202024105A0000).
文摘To thoroughly study the extinguishing effect of a high-pressure water mist fire extinguishing system when a transformer fire occurs,a 3D experimental model of a transformer is established in this work by employing Fire Dynamics Simulator(FDS)software.More specifically,by setting different parameters,the process of the highpressure water mist fire extinguishing system with the presence of both diverse ambient temperatures and water mist sprinkler laying conditions is simulated.In addition,the fire extinguishing effect of the employed high-pressure water mist system with the implementation of different strategies is systematically analyzed.The extracted results show that a fire source farther away fromthe centerline leads to a lower local temperature distribution.In addition,as the ambient temperature increases,the temperature above the fire source decreases,while the temperature and the concentrationof theupperflue gas layer bothdecrease.Interestingly,after thehigh-pressurewatermist sprinkler begins to operate,both the temperature distribution above the fire source and the concentration of the flue gas decrease,which indicates that the high-pressure water mist system plays the role of cooling and dust removal.By comparing various sprinkler laying methods,it is found that the lower sprinkler height has a better effect on the temperature above the fire source,the temperature of the upper flue gas layer,and the concentration of the flue gas.Moreover,when the sprinkler is spread over thewhole transformer,the cooling effect on both the temperature above the fire source and the temperature of the upper flue gas layer is good,whereas the change in the concentration of the flue gas above the fire source is not obvious compared to the case where the sprinkler is not fully spread.
基金supported by the National Key R&D Program of China(No.2017YFC0209905)the National Natural Science Foundation of China(Nos.91544232&51638001)+2 种基金the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(Nos.2013BAC17B01,2014BAC23B00)the Ministry of Environmental Protection Special Funds for Scientific Research on Public Causes(No.201409006)the fund support from Beijing Municipal Commission of Science and Technology(Nos.D161100004416001,Z161100004516013)
文摘In this study, the characteristics of fine particles before and after wet flue gas desulfurization(WFGD) in three coal-fired heating boilers in northern China were investigated by using a dilution-based emission sampling experimental system. The influences of the WFGD process on the mass and number concentrations as well as the chemical composition of fine particles were analyzed. The removal efficiency of desulfurization processes on particulate matter mass was 30.06%–56.25% for the three study units. The WFGD had a great influence on the size distributions of particle mass concentration and number concentration. A significant increase in the number and mass concentration of particles in the size range of 0.094–0.946 μm was observed. The watersoluble ion content accounted for a very large proportion of PM_(2.5) mass, and its proportion in PM_(2.5) increased from 28.39%–41.08% to 48.96%–61.21% after the WFGD process for the three units. The desulfurizing process also drastically increased the proportion of cation component(Ca^(2+) for unit A, Mg^(2+) for unit B, and Na+for unit C) and the proportion of SO_4^(2-) in PM_(2.5), and it increased the CE/AE values of PM_(2.5) from 0.82–0.98 to 0.93–1.27 for the three study units.
文摘Due to a serious shortage of the coal in Tonghua, a retrofit solution of mixing warm flue gas extracted from reversing chamber into the coal pulverizing system and cold air into the hot air coal pulverizing system is proposed so as to reduce oxygen content. At the end of the pulverizing system and medium temperature of the conveying system, dual-channel combustion burner is transformed into horizontal bias combustion burner. The measurement results show that 50% ratio of lignite blended in the 1025t/h bituminous boiler is feasibility. It is also an important technology to reduce NOx pollutant emission.
文摘There are many factors,that affect the development of indoor fire,such as the size of the fire source,the opening or space of the room,and the nature of the combustible materials.Among them,the space of the room,has a significant impact on the development of a ventilation-limited fire.In this paper,the Fire Dynamics Simulator(FDS)software is used to analyze,the risk of fire initiation in the restricted ventilated compartment,when the size of vertical ventilation space is different.Through,a combination of experimental design,numerical simulation,and theoretical analysis,the changes in the level of carbon monoxide,visibility,temperature,Heat Release Rate(HRR)and,the smoke exhaust efficiency of natural smoke at different opening sizes are observed.It is observed that,when the ratio of inlet and outlet area reaches 2:1,the natural smoke exhaust effect is the best,however,the increasing in the opening size has little significance on the smoke exhaust effect.The research on the influence of smoke outlet size,will helps in the development of the law regarding fire prevention,smoke exhaust design,and fire rescue work of a building.