Au]Cel_xZrxO2 catalysts (x = 0-0.8) were prepared by a deposition-precipitation method using Cel_xZrxO2 nanoparticles as supports with variable Ce and Zr contents. Their structures were characterized by complimentar...Au]Cel_xZrxO2 catalysts (x = 0-0.8) were prepared by a deposition-precipitation method using Cel_xZrxO2 nanoparticles as supports with variable Ce and Zr contents. Their structures were characterized by complimentary means such as X-ray diffraction, Raman, scanning trans- mission electron microscopy and X-ray photoelectron spectroscopy (XPS). These Au catalysts possessed similar sizes and crystalline phases of Cel_xZrzO2 supports as well as similar sizes and oxidation states of Au nanoparticles. The oxidation state of Au nanoparticles was dominated by Au~ especially in CO oxidation. Their activities were examined in CO oxidation at different temperatures in the range of 303-333 K. The CO oxidation rates normalized per Au atoms increased with the increasing Ce contents, and reached the maximum value over Au/CeO2. Such change was in parallel with the change in the oxygen storage capacity values, i.e. the amounts of active oxygen species on Au/Cel_zZrzO2 catalysts. The excellent correlation between the two properties of the catalysts suggests that the intrinsic support effects on the CO oxidation rates is related to the effects on the adsorption and activation of O2 on Au/Cel_xZrxO2 catalysts. Such understanding on the support effects may be useful for designing more active Au catalysts, for example, by tuning the redox properties of oxide supports.展开更多
Gold catalysts supported on Mg-Al mixed oxides for oxidative esterification of methacrolein are prepared by impregnation.Effects of the support particle size,concentration of HAuCl4 solution and Mg/Al ratio on gold lo...Gold catalysts supported on Mg-Al mixed oxides for oxidative esterification of methacrolein are prepared by impregnation.Effects of the support particle size,concentration of HAuCl4 solution and Mg/Al ratio on gold loading and catalytic properties are investigated.The catalysts are characterized by CO_(2)-TPD,EDS,XPS,STEM and XRD techniques.Catalysts with smaller support particle size show more uniform gold distribution and higher gold dispersion,resulting in a higher catalytic performance,and the uniformity of gold and the activity of the catalysts with larger support particle size can be improved by decreasing the concentration of HAuCl4 solution.The Mg/Al molar ratio has significant effect on the uniformity of gold and the activity of the catalyst,and the optimum Mg/Al molar ratio is 0.1–0.2.This study underlines the importance of engineering support particle size,concentration of HAuCl4 solution and density of adsorption sites for efficient gold loading on support by impregnation.展开更多
Supported manganese oxide catalysts were prepared by incipient wetness impregnation method for methane catalytic combustion, and effects of the support (Al2O3, SiO2 and TiO2) and Mn loading were investigated. These ...Supported manganese oxide catalysts were prepared by incipient wetness impregnation method for methane catalytic combustion, and effects of the support (Al2O3, SiO2 and TiO2) and Mn loading were investigated. These catalysts were characterized with N2 adsorption, X-ray diffraction, X-ray photoelectron spectroscopy and temperature-programmed reduction techniques. Methane conversion varied in a large range depending on supports or Mn loading. Al2O3 supported 15% Mn catalyst exhibited better activity toward methane catalytic oxidation. The manganese state and oxygen species played an important role in the catalytic performance,展开更多
The effect of a wide variety of metal oxide (MOx) supports has been discussed for CO oxidation on nanoparticulate gold catalysts. By using typical co‐precipitation and deposition–precipitation methods and under id...The effect of a wide variety of metal oxide (MOx) supports has been discussed for CO oxidation on nanoparticulate gold catalysts. By using typical co‐precipitation and deposition–precipitation methods and under identical calcination conditions, supported gold catalysts were prepared on a wide variety of MOx supports, and the temperature for 50%conversion was measured to qualita‐tively evaluate the catalytic activities of these simple MOx and supported Au catalysts. Furthermore, the difference in these temperatures for the simple MOx compared to the supported Au catalysts is plotted against the metal–oxygen binding energies of the support MOx. A clear volcano‐like correla‐tion between the temperature difference and the metal–oxygen binding energies is observed. This correlation suggests that the use of MOx with appropriate metal–oxygen binding energies (300–500 kJ/atom O) greatly improves the catalytic activity of MOx by the deposition of Au NPs.展开更多
The catalytic activities of the supported PdO catalysts were found to be dependenton the kind of the support as follows: CeO2>ZrO2>TiO2>Al2O3>SnO2>ZSM-5>SiO2.The reduction state of PdO in the catalys...The catalytic activities of the supported PdO catalysts were found to be dependenton the kind of the support as follows: CeO2>ZrO2>TiO2>Al2O3>SnO2>ZSM-5>SiO2.The reduction state of PdO in the catalyst played an important role in the oxidation activityof the catalyst. PdO/CeO2 was inferior to PdO/Al2O3 in heat-stability, but its activity for COoxidation was higher than PdO/Al2O3, after it had been calcinated at 1200 ℃ for 4 h.展开更多
Interactions between metals and supports are of fundamental interest in heterogeneous catalysis, Noble metal particles supported on transition metal oxides (TMO) may undergo a so-called strong metal-support interactio...Interactions between metals and supports are of fundamental interest in heterogeneous catalysis, Noble metal particles supported on transition metal oxides (TMO) may undergo a so-called strong metal-support interaction via encapsulation. This perspective addresses catalytic properties of the metal catalysts in the SMSI state which can be explained on the basis of complementary studies. The electronic geometric and bifunctional effects originating from strong metal-support interactions (SMSI) that are responsible for the catalyst’s activity, selectivity, and stability are key factors that determine performance. A series of Pd-Sb supported on different metal oxide (<em>i.e.</em> SiO<sub>2</sub>, <em>γ</em>-Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, and ZrO<sub>2</sub>) were prepared by the impregnation method. The catalysts were characterized by N<sub>2</sub> adsorption (BET-SA and pore size distribution), TEM (transmission electron microscope), TPR (temperature-programmed reduction), CO-chemisorption, the structural characterization of Pd (dispersity, surface area), interaction between Pd and Sb<sub>2</sub>O<sub>3</sub> and also the influence of the nature of the support were investigated. SiO<sub>2</sub> supported Pd catalyst exhibited the highest surface area (192.6 m<sup>2</sup>/g) and pore volume (0.542 cm<sup>3</sup>/g) compared to the other supported oxides catalysts. The electron micrographs of these catalysts showed a narrow size particle distribution of Pd, but with varying sizes which in the range from 1 to 10 nm, depending on the type of support used. The results show almost completely suppressed of CO chemisorption when the catalysts were subjected to high temperature reduction (HTR), this suppression was overcome by oxidation of a reduced Pd/MeOx catalysts followed by re-reduction in hydrogen at 453 K low temperature reduction (LTR), almost completely restored the normal chemisorptive properties of the catalysts, this suppression was attributed by SbOx species by a typical SMSI effect as known for other reducible supports such as TiO<sub>2</sub>, ZrO<sub>2</sub>, CeO<sub>2</sub>, and Nb<sub>2</sub>O<sub>5</sub>.展开更多
Atomically dispersing metal atoms on supports has been emerging as an effective strategy to maximize the atom utilization of metals for catalysis. However, due to the lack of effective tools to characterize the detail...Atomically dispersing metal atoms on supports has been emerging as an effective strategy to maximize the atom utilization of metals for catalysis. However, due to the lack of effective tools to characterize the detailed structure of metal-support interface, the chemical functions of supports in atomically dispersed metal catalysts are hardly elucidated at the molecular level. In this work, an atomically dispersed Pdl/ Ti02 catalyst with Ti(III) vicinal to Pd is prepared and used to demonstrate the direct involvement of metal atoms on support in the catalysis of dispersed metal atoms. Systematic studies reveal that the Ti (IlI)-O-Pd interface facilitates the activation of 02 into superoxide (02), thus promoting the catalytic oxi- dation. The catalyst exhibits the highest CO turn-over frequency among ever-reported Pd-based catalysts, and enhanced catalysis in the combustion of harmful volatile organic compound (i.e., toluene) and green- house gas (i.e., methane). The demonstrated direct involvement of metal atoms on oxide support suggests that the real active sites of atomically dispersed metal catalysts can be far beyond isolated metal atoms themselves. Metal atoms on oxide supports in the vicinity serve as another vector to promote the catalysis of atomically dispersed metal catalysts.展开更多
In this work,to study the phase structure effect,three groups of Cu/REO catalysts were prepared with cubic and monoclinic Gd_(2)O_(3),Eu_(2)O_(3)and Sm_(2)O_(3) supports for MSR reaction to produce H_(2).Based on CH3O...In this work,to study the phase structure effect,three groups of Cu/REO catalysts were prepared with cubic and monoclinic Gd_(2)O_(3),Eu_(2)O_(3)and Sm_(2)O_(3) supports for MSR reaction to produce H_(2).Based on CH3OH conversion and H_(2)yield,the reaction perfo rmance of the catalysts ranks as Cu/Sm_(2)O_(3)-M>Cu/Sm_(2)O_(3)-C>Cu/Gd_(2)O_(3)-M>Cu/Gd_(2)O_(3)-C>Cu/Eu_(2)O_(3)-M>Cu/Eu_(2)O_(3)-C.For the same kind of REO,Cu supported on the monoclinic support shows better performance than on the cubic one.Despite the phase structure difference,Sm_(2)O_(3) is the best support among all the three kinds of REOs.Compared with Cu/REO catalysts prepared with cubic supports,the corresponding catalysts prepared with monoclinic supports generally possess mo re surface oxygen vacancies,which can generate mo re surface active oxygen(O_(2)^(-)) and moderate basic sites.Moreover,the contents of Cu^(+) on the catalysts follow the same sequence.The reaction performance is positively related to the amount of these three types of surface sites.But metallic Cuo species is necessary to maintain the Cu^(+)■Cu^(0) redox cycle.Furthe rmore,on a catalyst with good perfo rmance,those vital surface reaction intermediates can be stabilized during the reaction.Cu/Sm_(2)O_(3)-M possesses the largest quantities of these surface sites,and has the appropriate amount of Cu^(+) and Cu^(0) after reduction,thereby displaying the optimal performance in all the catalysts.In conclusion,evident support crystal structure effect is observed for Cu/REO catalysts,and a monoclinic phase REO is a better support than the respective cubic phase one.展开更多
基金the National Natural Science Foundation of China(20825310,20973011)the National Basic Research Program of China(973 Program,2011CB201400,2011CB808700)
文摘Au]Cel_xZrxO2 catalysts (x = 0-0.8) were prepared by a deposition-precipitation method using Cel_xZrxO2 nanoparticles as supports with variable Ce and Zr contents. Their structures were characterized by complimentary means such as X-ray diffraction, Raman, scanning trans- mission electron microscopy and X-ray photoelectron spectroscopy (XPS). These Au catalysts possessed similar sizes and crystalline phases of Cel_xZrzO2 supports as well as similar sizes and oxidation states of Au nanoparticles. The oxidation state of Au nanoparticles was dominated by Au~ especially in CO oxidation. Their activities were examined in CO oxidation at different temperatures in the range of 303-333 K. The CO oxidation rates normalized per Au atoms increased with the increasing Ce contents, and reached the maximum value over Au/CeO2. Such change was in parallel with the change in the oxygen storage capacity values, i.e. the amounts of active oxygen species on Au/Cel_zZrzO2 catalysts. The excellent correlation between the two properties of the catalysts suggests that the intrinsic support effects on the CO oxidation rates is related to the effects on the adsorption and activation of O2 on Au/Cel_xZrxO2 catalysts. Such understanding on the support effects may be useful for designing more active Au catalysts, for example, by tuning the redox properties of oxide supports.
基金Open Project of Yunnan Precious Metals Laboratory Co.,Ltd(YPML-2023050269)the Fundamental Research Funds for the Central Universities(226-2023-00085,226-2023-00057).
文摘Gold catalysts supported on Mg-Al mixed oxides for oxidative esterification of methacrolein are prepared by impregnation.Effects of the support particle size,concentration of HAuCl4 solution and Mg/Al ratio on gold loading and catalytic properties are investigated.The catalysts are characterized by CO_(2)-TPD,EDS,XPS,STEM and XRD techniques.Catalysts with smaller support particle size show more uniform gold distribution and higher gold dispersion,resulting in a higher catalytic performance,and the uniformity of gold and the activity of the catalysts with larger support particle size can be improved by decreasing the concentration of HAuCl4 solution.The Mg/Al molar ratio has significant effect on the uniformity of gold and the activity of the catalyst,and the optimum Mg/Al molar ratio is 0.1–0.2.This study underlines the importance of engineering support particle size,concentration of HAuCl4 solution and density of adsorption sites for efficient gold loading on support by impregnation.
基金supported by the New Century Excellent Talent Project of China (NCET-05-0783).
文摘Supported manganese oxide catalysts were prepared by incipient wetness impregnation method for methane catalytic combustion, and effects of the support (Al2O3, SiO2 and TiO2) and Mn loading were investigated. These catalysts were characterized with N2 adsorption, X-ray diffraction, X-ray photoelectron spectroscopy and temperature-programmed reduction techniques. Methane conversion varied in a large range depending on supports or Mn loading. Al2O3 supported 15% Mn catalyst exhibited better activity toward methane catalytic oxidation. The manganese state and oxygen species played an important role in the catalytic performance,
文摘The effect of a wide variety of metal oxide (MOx) supports has been discussed for CO oxidation on nanoparticulate gold catalysts. By using typical co‐precipitation and deposition–precipitation methods and under identical calcination conditions, supported gold catalysts were prepared on a wide variety of MOx supports, and the temperature for 50%conversion was measured to qualita‐tively evaluate the catalytic activities of these simple MOx and supported Au catalysts. Furthermore, the difference in these temperatures for the simple MOx compared to the supported Au catalysts is plotted against the metal–oxygen binding energies of the support MOx. A clear volcano‐like correla‐tion between the temperature difference and the metal–oxygen binding energies is observed. This correlation suggests that the use of MOx with appropriate metal–oxygen binding energies (300–500 kJ/atom O) greatly improves the catalytic activity of MOx by the deposition of Au NPs.
文摘The catalytic activities of the supported PdO catalysts were found to be dependenton the kind of the support as follows: CeO2>ZrO2>TiO2>Al2O3>SnO2>ZSM-5>SiO2.The reduction state of PdO in the catalyst played an important role in the oxidation activityof the catalyst. PdO/CeO2 was inferior to PdO/Al2O3 in heat-stability, but its activity for COoxidation was higher than PdO/Al2O3, after it had been calcinated at 1200 ℃ for 4 h.
文摘Interactions between metals and supports are of fundamental interest in heterogeneous catalysis, Noble metal particles supported on transition metal oxides (TMO) may undergo a so-called strong metal-support interaction via encapsulation. This perspective addresses catalytic properties of the metal catalysts in the SMSI state which can be explained on the basis of complementary studies. The electronic geometric and bifunctional effects originating from strong metal-support interactions (SMSI) that are responsible for the catalyst’s activity, selectivity, and stability are key factors that determine performance. A series of Pd-Sb supported on different metal oxide (<em>i.e.</em> SiO<sub>2</sub>, <em>γ</em>-Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, and ZrO<sub>2</sub>) were prepared by the impregnation method. The catalysts were characterized by N<sub>2</sub> adsorption (BET-SA and pore size distribution), TEM (transmission electron microscope), TPR (temperature-programmed reduction), CO-chemisorption, the structural characterization of Pd (dispersity, surface area), interaction between Pd and Sb<sub>2</sub>O<sub>3</sub> and also the influence of the nature of the support were investigated. SiO<sub>2</sub> supported Pd catalyst exhibited the highest surface area (192.6 m<sup>2</sup>/g) and pore volume (0.542 cm<sup>3</sup>/g) compared to the other supported oxides catalysts. The electron micrographs of these catalysts showed a narrow size particle distribution of Pd, but with varying sizes which in the range from 1 to 10 nm, depending on the type of support used. The results show almost completely suppressed of CO chemisorption when the catalysts were subjected to high temperature reduction (HTR), this suppression was overcome by oxidation of a reduced Pd/MeOx catalysts followed by re-reduction in hydrogen at 453 K low temperature reduction (LTR), almost completely restored the normal chemisorptive properties of the catalysts, this suppression was attributed by SbOx species by a typical SMSI effect as known for other reducible supports such as TiO<sub>2</sub>, ZrO<sub>2</sub>, CeO<sub>2</sub>, and Nb<sub>2</sub>O<sub>5</sub>.
基金supported by the National Key Research and Development Program of China(2017YFA0207302)the National Natural Science Foundation of China(21731005,21420102001,21373167,and 21573178)+1 种基金the National Postdoctoral Program for Innovative Talents(BX201600093)the China Postdoctoral Science Foundation Project(2017M610392)
文摘Atomically dispersing metal atoms on supports has been emerging as an effective strategy to maximize the atom utilization of metals for catalysis. However, due to the lack of effective tools to characterize the detailed structure of metal-support interface, the chemical functions of supports in atomically dispersed metal catalysts are hardly elucidated at the molecular level. In this work, an atomically dispersed Pdl/ Ti02 catalyst with Ti(III) vicinal to Pd is prepared and used to demonstrate the direct involvement of metal atoms on support in the catalysis of dispersed metal atoms. Systematic studies reveal that the Ti (IlI)-O-Pd interface facilitates the activation of 02 into superoxide (02), thus promoting the catalytic oxi- dation. The catalyst exhibits the highest CO turn-over frequency among ever-reported Pd-based catalysts, and enhanced catalysis in the combustion of harmful volatile organic compound (i.e., toluene) and green- house gas (i.e., methane). The demonstrated direct involvement of metal atoms on oxide support suggests that the real active sites of atomically dispersed metal catalysts can be far beyond isolated metal atoms themselves. Metal atoms on oxide supports in the vicinity serve as another vector to promote the catalysis of atomically dispersed metal catalysts.
基金Project supported by the National Natural Science Foundation of China(22172071,22102069,22062013,22262021,21962009)Natural Science Foundation of Jiangxi Province,China(20202BAB203006,20212BAB203030)Key Laboratory Foundation of Jiangxi Province for Environment and Energy Catalysis,China(20181BCD40004).
文摘In this work,to study the phase structure effect,three groups of Cu/REO catalysts were prepared with cubic and monoclinic Gd_(2)O_(3),Eu_(2)O_(3)and Sm_(2)O_(3) supports for MSR reaction to produce H_(2).Based on CH3OH conversion and H_(2)yield,the reaction perfo rmance of the catalysts ranks as Cu/Sm_(2)O_(3)-M>Cu/Sm_(2)O_(3)-C>Cu/Gd_(2)O_(3)-M>Cu/Gd_(2)O_(3)-C>Cu/Eu_(2)O_(3)-M>Cu/Eu_(2)O_(3)-C.For the same kind of REO,Cu supported on the monoclinic support shows better performance than on the cubic one.Despite the phase structure difference,Sm_(2)O_(3) is the best support among all the three kinds of REOs.Compared with Cu/REO catalysts prepared with cubic supports,the corresponding catalysts prepared with monoclinic supports generally possess mo re surface oxygen vacancies,which can generate mo re surface active oxygen(O_(2)^(-)) and moderate basic sites.Moreover,the contents of Cu^(+) on the catalysts follow the same sequence.The reaction performance is positively related to the amount of these three types of surface sites.But metallic Cuo species is necessary to maintain the Cu^(+)■Cu^(0) redox cycle.Furthe rmore,on a catalyst with good perfo rmance,those vital surface reaction intermediates can be stabilized during the reaction.Cu/Sm_(2)O_(3)-M possesses the largest quantities of these surface sites,and has the appropriate amount of Cu^(+) and Cu^(0) after reduction,thereby displaying the optimal performance in all the catalysts.In conclusion,evident support crystal structure effect is observed for Cu/REO catalysts,and a monoclinic phase REO is a better support than the respective cubic phase one.