In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl gro...In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations.展开更多
Here,furfural oxidation was performed to replace the kinetically sluggish O_(2)evolution reaction(OER).Pt-Co_(3)O_(4)nanospheres were developed via pulsed laser ablation in liquid(PLAL)in a single step for the paired ...Here,furfural oxidation was performed to replace the kinetically sluggish O_(2)evolution reaction(OER).Pt-Co_(3)O_(4)nanospheres were developed via pulsed laser ablation in liquid(PLAL)in a single step for the paired electrocatalysis of an H_(2)evolution reaction(HER)and furfural oxidation reaction(FOR).The FOR afforded a high furfural conversion(44.2%)with a major product of 2-furoic acid after a 2-h electrolysis at 1.55 V versus reversible hydrogen electrode in a 1.0-M KOH/50-mM furfural electrolyte.The Pt-Co_(3)O_(4)electrode exhibited a small overpotential of 290 mV at 10 mA cm^(-2).As an anode and cathode in an electrolyzer system,the Pt-Co_(3)O_(4)electrocatalyst required only a small applied cell voltage of~1.83 V to deliver 10 mA cm^(-2),compared with that of the pure water electrolyzer(OER||HER,~1.99 V).This study simultaneously realized the integrated production of energy-saving H_(2)fuel at the cathode and 2-furoic acid at the anode.展开更多
High-temperature oxidation behavior of ferrovanadium(FeV_(2)O_(4))and ferrochrome(FeCr_(2)O_(4))spinels is crucial for the application of spinel as an energy material,as well as for the clean usage of high-chromium va...High-temperature oxidation behavior of ferrovanadium(FeV_(2)O_(4))and ferrochrome(FeCr_(2)O_(4))spinels is crucial for the application of spinel as an energy material,as well as for the clean usage of high-chromium vanadium slag.Herein,the nonisothermal oxidation behavior of FeV_(2)O_(4)and FeCr_(2)O_(4)prepared by high-temperature solid-state reaction was examined by thermogravimetry and X-ray diffraction(XRD)at heating rates of 5,10,and 15 K/min.The apparent activation energy was determined by the Kissinger-Akahira-Sunose(KAS)method,whereas the mechanism function was elucidated by the Malek method.Moreover,in-situ XRD was conducted to deduce the phase transformation of the oxidation mechanism for FeV_(2)O_(4)and FeCr_(2)O_(4).The results reveal a gradual increase in the overall apparent activation energies for FeV_(2)O_(4)and FeCr_(2)O_(4)during oxidation.Four stages of the oxidation process are observed based on the oxidation conversion rate of each compound.The oxidation mechanisms of FeV_(2)O_(4)and FeCr_(2)O_(4)are complex and have distinct mechanisms.In particular,the chemical reaction controls the entire oxidation process for FeV_(2)O_(4),whereas that for FeCr_(2)O_(4)transitions from a three-dimensional diffusion model to a chemical reaction model.According to the in-situ XRD results,numerous intermediate products are observed during the oxidation process of both compounds,eventually resulting in the final products FeVO_(4)and V2O_(5)for FeV_(2)O_(4)and Fe_(2)O_(3)and Cr_(2)O_(3)for FeCr_(2)O_(4),respectively.展开更多
Spinel oxide(NiCo_(2)O_(4))has demonstrated great potential to replace noble metal catalysts for the oxidation reaction of air pollutants.To further boost the oxidation ability of such catalysts,in this study,a facile...Spinel oxide(NiCo_(2)O_(4))has demonstrated great potential to replace noble metal catalysts for the oxidation reaction of air pollutants.To further boost the oxidation ability of such catalysts,in this study,a facile surface-engineering strategy wherein NiCo_(2)O_(4) was treated with different alkali solvents was developed.The obtained catalyst(NiCo_(2)O_(4)-OH)showed a higher surface alkalinity and more surface defects compared to the pristine spinel oxide,including enhanced structural distortion as well as promoted oxygen vacancies.The propane oxidation ability of NiCo_(2)O_(4)-OH was greatly enhanced,with a propane conversion rate that was approximately 6.4 times higher than that of pristine NiCo_(2)O_(4) at a reaction temperature 193℃.This work sets a valuable paradigm for the surface modulation of spinel oxide via alkali treatment to ensure a high-performance oxidation catalyst.展开更多
The oxidation behavior of ferrovanadium spinel(FeV_(2)O_(4)),synthesized via high-temperature solid-state reaction,was investigated using thermogravimetry,X-ray diffractometry,and X-ray photoelectron spectroscopy over...The oxidation behavior of ferrovanadium spinel(FeV_(2)O_(4)),synthesized via high-temperature solid-state reaction,was investigated using thermogravimetry,X-ray diffractometry,and X-ray photoelectron spectroscopy over the temperature range of 450–700℃.The results revealed that the oxidation process of FeV_(2)O_(4)can be divided into three stages with the second stage being responsible for maximum weight gain due to oxidation.Three classical methods were employed to analyze the reaction mechanisms and model functions for distinct oxidation stages.The random nucleation and subsequent growth(A_(3))kinetic model was found to be applicable to both initial and secondary stage.The third stage of oxidation was consistent with the three-dimensional diffusion,spherical symmetry(D_(3))kinetic mode.Both the model-function method and the model-free method were utilized to investigate the apparent activation energy of the oxidation reaction at each stage.It was found that the intermediates including Fe_(3)O_(4),VO_(2),V_(2)O_(3),and Fe_(2.5)V_(7.11)O_(16),played significant roles in the oxidation process prior to the final formation of FeVO_(4)and V_(2)O_(5)through oxidation of FeV_(2)O_(4).展开更多
Resin-bonded Al-SiC composite was sintered at 1100,1300,and 1500℃ in the air,the oxidation mechanism was investigated.The reaction models were also established.The oxidation resistance of the Al-SiC composite was sig...Resin-bonded Al-SiC composite was sintered at 1100,1300,and 1500℃ in the air,the oxidation mechanism was investigated.The reaction models were also established.The oxidation resistance of the Al-SiC composite was significantly enhanced with temperature increase.SiC in the exterior of the composite was partially oxidized slightly,while the transformation of metastable Al_(4)C_(3) to stable Al_(4)SiC_(4) existed in the interior.At 1100℃,Al in the interior reacted with residual C to form Al_(4)C_(3).With increasing to 1300℃,high temperature and low oxygen partial pressure lead to active oxidation of SiC,and internal gas composition transforms to Al_(2)O(g)+CO(g)+SiO(g)as the reaction proceeds.After Al_(4)C_(3) is formed,CO(g)and SiO(g)are continuously deposited on its surface,transforming to Al_(4)SiC_(4).At 1500℃,a dense layer consisting of SiC and Al_(4)SiC_(4) whiskers is formed which cuts off the diffusion channel of oxygen.The active oxidation of SiC is accelerated,enabling more gas to participate in the synthesis of Al_(4)SiC_(4),eventually forming hexagonal lamellar Al_(4)SiC_(4) with mutual accumulation between SiC particles.Introducing Al enhances the oxidation resistance of SiC.In addition,the in situ generated non-oxide is uniformly dispersed on a micro-scale and bonds SiC stably.展开更多
A green environmental protection and enhanced leaching process was proposed to recover all elements from spent lithium iron phosphate(LiFePO_(4)) lithium batteries.In order to reduce the influence of Al impurity in th...A green environmental protection and enhanced leaching process was proposed to recover all elements from spent lithium iron phosphate(LiFePO_(4)) lithium batteries.In order to reduce the influence of Al impurity in the recovery process,NaOH was used to remove impurity.After impurity removal,the spent LiFePO_(4) cathode material was used as raw material under the H_(2)SO_(4) system,and the pressure oxidation leaching process was adopted to achieve the preferential leaching of lithium.The E-pH diagram of the Fe-P-Al-H_(2)O system can determine the stable region of each element in the recovery process of spent LiFePO_(4)Li-batteries.Under the optimal conditions(500 r·min^(-1),15 h,363.15 K,0.4 MPa,the liquid-solid ratio was 4:1 ml·g^(-1)and the acid-material ratio was 0.29),the leaching rate of Li was 99.24%,Fe,Al,and Ti were 0.10%,2.07%,and 0.03%,respectively.The Fe and P were precipitated and recovered as FePO_(4)·2H_(2)O.The kinetic analysis shows that the process of high-pressure acid leaching of spent LiFePO_(4) materials depends on the surface chemical reaction.Through the life cycle assessment(LCA)of the spent LiFePO_(4) whole recovery process,eight midpoint impact categories were selected to assess the impact of recovery process.The results can provide basic environmental information on production process for recycling industry.展开更多
The highly selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dihydroxymethylfuran is an important reaction in the field of biomass hydrogenation,because it is a bridge between biomass resources and chemical in...The highly selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dihydroxymethylfuran is an important reaction in the field of biomass hydrogenation,because it is a bridge between biomass resources and chemical industry.Here,we precisely constructed carbon nitride supported Pd-based catalysts by a simple impregnation-reduction method.By changing the reduction temperature,catalysts with different oxidation state could be precisely constructed.Moreover,the important correlation between the ratio of Pd^(0)/Pd^(2+)and catalytic activity is revealed during the selective hydrogenation of HMF.The Pd/g—C_(3)N_(4)—300 catalyst with a Pd^(0)/Pd^(2+)ratio of 3/2 showed the highest catalytic activity,which could get 96.9%5-hydroxymethylfurfural conversion and 90.3%2,5-dihydroxymethylfuran selectivity.Further density functional theory calculation revealed that the synergistic effect between Pd0and Pd2+in Pd/g—C_(3)N_(4)—300 system could boost the adsorption of the substrate and the dissociation of hydrogen.In this work,we highlight the important correlation between metal oxidation state and catalytic activity,which provides valuable insights for the rational design of precious metal catalysts for hydrogenation reactions.展开更多
Chemical-looping oxidative dehydrogenation(CL-ODH)is a process designed for the conversion of alkanes into olefins through cyclic redox reactions,eliminating the need for gaseous O_(2).In this work,we investigated the...Chemical-looping oxidative dehydrogenation(CL-ODH)is a process designed for the conversion of alkanes into olefins through cyclic redox reactions,eliminating the need for gaseous O_(2).In this work,we investigated the use of Ca_(2)MnO_(4)-layered perovskites modified with NaNO_(3) dopants,serving as redox catalysts(also known as oxygen carriers),for the CL-ODH of ethane within a temperature range of 700-780℃.Our findings revealed that the incorporation of NaNO_(3) as a modifier significantly-nhanced the selectivity for-thylene generation from Ca_(2)MnO_(4).At 750℃and a gas hourly space velocity of 1300 h^(-1),we achieved an-thane conversion up to 68.17%,accompanied by a corresponding-thylene yield of 57.39%.X-ray photoelectron spectroscopy analysis unveiled that the doping NaNO_(3) onto Ca_(2)MnO_(4) not only played a role in reducing the oxidation state of Mn ions but also increased the lattice oxygen content of the redox catalyst.Furthermore,formation of NaNO_(3) shell on the surface of Ca_(2)MnO_(4) led to a reduction in the concentration of manganese sites and modulated the oxygen-releasing behavior in a step-wise manner.This modulation contributed significantly to the enhanced selectivity for ethylene of the NaNO_(3)-doped Ca_(2)MnO_(4) catalyst.These findings provide compelling evidence for the potential of Ca_(2)MnO_(4)-layered perovskites as promising redox catalysts in the context of CL-ODH reactions.展开更多
The selective oxidation of 5-hydroxymethylfurfural(HMF) into 2,5-diformylfuran(DFF) is an important reaction for renewable biomass building blocks. Compared with thermal catalytic processes, photocatalytic production ...The selective oxidation of 5-hydroxymethylfurfural(HMF) into 2,5-diformylfuran(DFF) is an important reaction for renewable biomass building blocks. Compared with thermal catalytic processes, photocatalytic production of DFF from HMF has attracted tremendous attention. Herein, the MoS_(2)/CdIn_(2)S_(4)(MC)flower-like heterojunctions were prepared and considered as photocatalysts for selective oxidation of HMF into DFF under visible-light irradiation in aqueous solution. Results demonstrated MoS_(2) in MC heterojunction could promote the separation of photoexcited electron-hole pairs, while the amount of MoS_(2) dropping was proved influenced on the photocatalytic performance. 80.93% of DFF selectivity was realized when using 12.5% MC as photocatalyst. In addition, the MC catalyst also showed great potential in transformation of other biomass derived benzyl-and furyl-alcohols. The catalytic mechanism suggested that ·O_(2)^(-) was the decisive active radical for HMF oxidation. Therefore, the MC heterojunction could be applied in photocatalytic conversion of biomass to valuable chemicals under ambient condition.展开更多
This work looked into the influence of the sealing treatment on the structural feature and electrochemical response of AZ31 Mg alloy coated via plasma electrolytic oxidation(PEO).Here,the inorganic layers produced by ...This work looked into the influence of the sealing treatment on the structural feature and electrochemical response of AZ31 Mg alloy coated via plasma electrolytic oxidation(PEO).Here,the inorganic layers produced by PEO in an alkaline-phosphate electrolyte were subsequently immersed for different periods in cold(60°C)and hot(100°C)aqueous solutions containing either 1 or 3 gr of cobalt nitrate hexahydrate in the presence of hydrogen peroxide as an initiator.The results showed that the sealing treatments in the hot solutions could trigger the hydration reactions of PEO coating which would largely assist the surface incorporation of Co_(3)O_(4)into the coating.In contrast,the sealing in cold solutions led to less compact coatings,which was attributed to the fact the hydration reactions would be restricted at 60°C.A nearly fully sealed coating with a porosity of~0.5%was successfully formed on the sample immersed in the hot solution containing 1 gr of cobalt nitrate hexahydrate.Thus,the electrochemical stability of this fully sealed coating was superior to the other samples as it had the lowest corrosion current density(4.71×10^(-10)A·cm^(-2))and the highest outer layer resistance(3.81×10^(7)Ω·cm^(2)).The composite coatings developed in this study are ideal for applications requiring high electrochemical stability.展开更多
Cu-Mn_(3)O_(4)composite coating was prepared on the SUS 430 ferritic stainless steel by electrodeposition and then exposed in air at 800℃corresponding to the cathode atmosphere of solid oxide fuel cell(SOFC).A dual-l...Cu-Mn_(3)O_(4)composite coating was prepared on the SUS 430 ferritic stainless steel by electrodeposition and then exposed in air at 800℃corresponding to the cathode atmosphere of solid oxide fuel cell(SOFC).A dual-layer oxide structure mainly comprising an external layer of CuO followed by(Cu,Mn,Fe)_(3)O_(4)spinel and an internal layer of Cr-rich oxide was thermally developed on the coated steel.The scale area-specific resistances(ASRs)of the coated steels were lower than the scale ASR of the uncoated steel after identical thermal exposure.The external layer of CuO/(Cu,Mn,Fe)_(3)O_(4)spinel not only served as a barrier to reduce the growth rate of Cr-rich oxide internal layer and to suppress the outward diffusion of Cr,but also lowered the surface scale ASRs considerably.展开更多
The Sr/F co-doped CaP(Sr/F-CaP)coatings were prepared by micro-arc oxidation(MAO)under different voltages to modify the microstructure and corrosion behavior of Mg-4Zn-1Mn alloy.The surface and interface characteristi...The Sr/F co-doped CaP(Sr/F-CaP)coatings were prepared by micro-arc oxidation(MAO)under different voltages to modify the microstructure and corrosion behavior of Mg-4Zn-1Mn alloy.The surface and interface characteristics investigated using scanning electron microscopy(SEM)and energy dispersive X-ray spectrometer(EDS)showed that the MAO coatings displayed uneven crater-like holes and tiny cracks under lower voltage,while they exhibited relatively homogeneous crater-like holes without cracks under higher voltage.The thickness of MAO coatings increased with increasing voltage.The corrosion behavior of Mg-4Zn-1Mn alloy was improved by the MAO coatings.The MAO coatings prepared under 450 V and 500 V voltages possessed the best corrosion resistance with regard to the electrochemical corrosion tests and immersion corrosion tests,respectively.The MAO coatings fabricated under 450-500 V could provide a better corrosion protection effect for the substrate.展开更多
Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improv...Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improved the catalytic activity significantly.When using Pt/Ce-Zr-SO_4^(2-) with 10 wt%SO_4^(2-),the temperature for 90%conversion of propene and CO decreased by 75℃ compared with Pt/Ce-Zr.The conversion exceeded 95%at 240℃ even after 0.02%sulfur dioxide poisoning for 20 h.Temperature-programmed desorption of CO and X-ray photoelectron spectroscopy analyses revealed an improvement in Pt dispersion onto the Ce-Zr-SO_4^(2-) support,and the increased number of Pt particles built up more Pt^(-)-(SO_4^(2-))^(-) couples,which resulted in excellent activity.The increased total acidity and new Bronsted acid sites on the surface provided the Pt/Ce-Zr-SO_4^(2-) with good sulfur resistance.展开更多
H3PO4 oxidation roasting followed by HCl acid leaching was proposed to remove magnesium and calcium from electric furnace titanium slag containing 3.12% MgO and 0.86% CaO. XRF, XRD and SEM techniques were used to char...H3PO4 oxidation roasting followed by HCl acid leaching was proposed to remove magnesium and calcium from electric furnace titanium slag containing 3.12% MgO and 0.86% CaO. XRF, XRD and SEM techniques were used to characterize the composition, mineral phase component and microstructure of the titanium slag. The H3PO4 oxidation thermodynamic, mineral phase transformation, microstructure, element distribution in titanium slag during H3PO4 oxidation process and leaching process were investigated. The thermodynamic analysis indicated that H3PO4 could promote the decomposition of MgTi2O5 and CaSiO3. The results indicated that H3PO4 could effectively promote the transformation of titanium-bearing mineral to rutile and enrich the impurities in MxTi(3-x)O5 into phosphate which could be removed by acid leaching process. Under the studied conditions, the leaching rates of magnesium and calcium reached 94.68% and 87.19%, respectively. The acid leached slag containing 0.19% MgO and 0.13% CaO(mass fraction) was obtained.展开更多
In order to remove gas-phase mercury and NOx from flue gas, experimental studies on flue gas mercury oxidation removal and denitration of Guizhou anthracite combustion with NH4Br addition were carried out. The influen...In order to remove gas-phase mercury and NOx from flue gas, experimental studies on flue gas mercury oxidation removal and denitration of Guizhou anthracite combustion with NH4Br addition were carried out. The influence of NH4Br addition on the ignition temperature and combustion characteristics was studied using a thermogravimetric analyzer. The effects of the NHaBr addition amount on gas-phase mercury oxidation and removal were investigated in a bench scale of 6 kW fluidized bed combustor (FBC). Mercury concentrations in flue gas were determined by the Ontario hydro method (OHM) and the mercury mass balance was obtained. Results show that the NH4Br addition has little influence on the ignition temperature of Guizhou anthracite. With the mercury mass balance of 95.47%, the proportion of particulate mercury Hg^p, gaseous mercury Hg^0 and Hg^2+ are 75.28%, 11.60% and 13. 12%, respectively, as raw coal combustion. The high particulate mercury Hg^p in flue gas is caused by the high unburned carbon content in fly ash. When the NH4Br addition amount increases from 0 to 0. 3%, the concentration of gaseous Hg^0 and Hg^2+ in flue gas decreases continuously, leading to the Hg^p increase accordingly. The oxidation rate of Hg^0 is positively correlated to the Br addition amount. It demonstrates that coal combustion with NH4Br addition can promote Hg^0 oxidation and removal. NOx concentration in flue gas exhibits a descending trend with the NHaBr addition and the removal rate reaches 17.31% with the addition amount of 0.3%. Adding NH4Br to coal also plays a synergistic role in denitration.展开更多
Stroke is the second leading cause of death worldwide,and oxidative stress plays a crucial role.Celastrol exhibits strong antioxidant properties in several diseases;however,whether it can affect oxidation in cerebral ...Stroke is the second leading cause of death worldwide,and oxidative stress plays a crucial role.Celastrol exhibits strong antioxidant properties in several diseases;however,whether it can affect oxidation in cerebral ischemic-reperfusion injury(CIRI)remains unclear.This study aimed to determine whether celastrol could reduce oxidative damage during CIRI and to elucidate the underlying mechanisms.Here,we found that celastrol attenuated oxidative injury in CIRI by upregulating nuclear factor E2-related factor 2(Nrf2).Using alkynyl-tagged celastrol and liquid chromatography-tandem mass spectrometry,we showed that celastrol directly bound to neuronally expressed developmentally downregulated 4(Nedd4)and then released Nrf2 from Nedd4 in astrocytes.Nedd4 promoted the degradation of Nrf2 through K48-linked ubiquitination and thus contributed to astrocytic reactive oxygen species production in CIRI,which was significantly blocked by celastrol.Furthermore,by inhibiting oxidative stress and astrocyte activation,celastrol effectively rescued neurons from axon damage and apoptosis.Our study uncovered Nedd4 as a direct target of celastrol,and that celastrol exerts an antioxidative effect on astrocytes by inhibiting the interaction between Nedd4 and Nrf2 and reducing Nrf2 degradation in CIRI.展开更多
基金The authors gratefully acknowledge the financial support of the Natural Science Foundation of China,China(Grant No.21975082 and 21736003)the Guangdong Basic and Applied Basic Research Foundation(Grant Number:2019A1515011472 and 2022A1515011341)the Science and Technology Program of Guangzhou(Grant Number:202102080479).
文摘In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations.
基金supported by Korea Basic Science Institute(National research Facilities and Equipment Center)grant funded by the Ministry of Education(Nos.2019R1A6C1010042 and 2021R1A6C103A427)the financial support from National Research Foundation of Korea(NRF),(2022R1A2C2010686,2022R1A4A3033528,2019H1D3A1A01071209,and 2021R1I1A1A01060380)
文摘Here,furfural oxidation was performed to replace the kinetically sluggish O_(2)evolution reaction(OER).Pt-Co_(3)O_(4)nanospheres were developed via pulsed laser ablation in liquid(PLAL)in a single step for the paired electrocatalysis of an H_(2)evolution reaction(HER)and furfural oxidation reaction(FOR).The FOR afforded a high furfural conversion(44.2%)with a major product of 2-furoic acid after a 2-h electrolysis at 1.55 V versus reversible hydrogen electrode in a 1.0-M KOH/50-mM furfural electrolyte.The Pt-Co_(3)O_(4)electrode exhibited a small overpotential of 290 mV at 10 mA cm^(-2).As an anode and cathode in an electrolyzer system,the Pt-Co_(3)O_(4)electrocatalyst required only a small applied cell voltage of~1.83 V to deliver 10 mA cm^(-2),compared with that of the pure water electrolyzer(OER||HER,~1.99 V).This study simultaneously realized the integrated production of energy-saving H_(2)fuel at the cathode and 2-furoic acid at the anode.
基金This work was supported by the National Natural Science Foundation of China(No.52004044)the Natural Science Foundation of Chongqing,China(Nos.cstb2022nscqmsx0801 and cstc2021jcyj-msxmx0882)+2 种基金the Foundation of Chongqing University of Science and Technology(No.ckrc2022030)the Graduate Research Innovation Project of Chongqing University of Science and Technology(No.YKJCX2220216)the National Undergraduate Training Program for Innovation and Entrepreneurship(No.202311551007).
文摘High-temperature oxidation behavior of ferrovanadium(FeV_(2)O_(4))and ferrochrome(FeCr_(2)O_(4))spinels is crucial for the application of spinel as an energy material,as well as for the clean usage of high-chromium vanadium slag.Herein,the nonisothermal oxidation behavior of FeV_(2)O_(4)and FeCr_(2)O_(4)prepared by high-temperature solid-state reaction was examined by thermogravimetry and X-ray diffraction(XRD)at heating rates of 5,10,and 15 K/min.The apparent activation energy was determined by the Kissinger-Akahira-Sunose(KAS)method,whereas the mechanism function was elucidated by the Malek method.Moreover,in-situ XRD was conducted to deduce the phase transformation of the oxidation mechanism for FeV_(2)O_(4)and FeCr_(2)O_(4).The results reveal a gradual increase in the overall apparent activation energies for FeV_(2)O_(4)and FeCr_(2)O_(4)during oxidation.Four stages of the oxidation process are observed based on the oxidation conversion rate of each compound.The oxidation mechanisms of FeV_(2)O_(4)and FeCr_(2)O_(4)are complex and have distinct mechanisms.In particular,the chemical reaction controls the entire oxidation process for FeV_(2)O_(4),whereas that for FeCr_(2)O_(4)transitions from a three-dimensional diffusion model to a chemical reaction model.According to the in-situ XRD results,numerous intermediate products are observed during the oxidation process of both compounds,eventually resulting in the final products FeVO_(4)and V2O_(5)for FeV_(2)O_(4)and Fe_(2)O_(3)and Cr_(2)O_(3)for FeCr_(2)O_(4),respectively.
基金financially supported by the National Natural Science Foundation of China(No.22072069)the Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials(Wuhan University of Science and Technology No.WKDM202303).
文摘Spinel oxide(NiCo_(2)O_(4))has demonstrated great potential to replace noble metal catalysts for the oxidation reaction of air pollutants.To further boost the oxidation ability of such catalysts,in this study,a facile surface-engineering strategy wherein NiCo_(2)O_(4) was treated with different alkali solvents was developed.The obtained catalyst(NiCo_(2)O_(4)-OH)showed a higher surface alkalinity and more surface defects compared to the pristine spinel oxide,including enhanced structural distortion as well as promoted oxygen vacancies.The propane oxidation ability of NiCo_(2)O_(4)-OH was greatly enhanced,with a propane conversion rate that was approximately 6.4 times higher than that of pristine NiCo_(2)O_(4) at a reaction temperature 193℃.This work sets a valuable paradigm for the surface modulation of spinel oxide via alkali treatment to ensure a high-performance oxidation catalyst.
基金Project(cstb2022nscq-msx0801)supported by the Natural Science Foundation of Chongqing,ChinaProject(52004044)supported by the National Natural Science Foundation of China+2 种基金Project(ckrc2022030)supported by the Foundation of Chongqing University of Science and Technology,ChinaProject(YKJCX2220216)supported by the Graduate Research Innovation Project of Chongqing University of Science and Technology,ChinaProject(202311551007)supported by the National Undergraduate Training Program for Innovation and Entrepreneurship,China。
文摘The oxidation behavior of ferrovanadium spinel(FeV_(2)O_(4)),synthesized via high-temperature solid-state reaction,was investigated using thermogravimetry,X-ray diffractometry,and X-ray photoelectron spectroscopy over the temperature range of 450–700℃.The results revealed that the oxidation process of FeV_(2)O_(4)can be divided into three stages with the second stage being responsible for maximum weight gain due to oxidation.Three classical methods were employed to analyze the reaction mechanisms and model functions for distinct oxidation stages.The random nucleation and subsequent growth(A_(3))kinetic model was found to be applicable to both initial and secondary stage.The third stage of oxidation was consistent with the three-dimensional diffusion,spherical symmetry(D_(3))kinetic mode.Both the model-function method and the model-free method were utilized to investigate the apparent activation energy of the oxidation reaction at each stage.It was found that the intermediates including Fe_(3)O_(4),VO_(2),V_(2)O_(3),and Fe_(2.5)V_(7.11)O_(16),played significant roles in the oxidation process prior to the final formation of FeVO_(4)and V_(2)O_(5)through oxidation of FeV_(2)O_(4).
基金supported by the National Key Research and Development Program of China(No.2021YFB3701400).
文摘Resin-bonded Al-SiC composite was sintered at 1100,1300,and 1500℃ in the air,the oxidation mechanism was investigated.The reaction models were also established.The oxidation resistance of the Al-SiC composite was significantly enhanced with temperature increase.SiC in the exterior of the composite was partially oxidized slightly,while the transformation of metastable Al_(4)C_(3) to stable Al_(4)SiC_(4) existed in the interior.At 1100℃,Al in the interior reacted with residual C to form Al_(4)C_(3).With increasing to 1300℃,high temperature and low oxygen partial pressure lead to active oxidation of SiC,and internal gas composition transforms to Al_(2)O(g)+CO(g)+SiO(g)as the reaction proceeds.After Al_(4)C_(3) is formed,CO(g)and SiO(g)are continuously deposited on its surface,transforming to Al_(4)SiC_(4).At 1500℃,a dense layer consisting of SiC and Al_(4)SiC_(4) whiskers is formed which cuts off the diffusion channel of oxygen.The active oxidation of SiC is accelerated,enabling more gas to participate in the synthesis of Al_(4)SiC_(4),eventually forming hexagonal lamellar Al_(4)SiC_(4) with mutual accumulation between SiC particles.Introducing Al enhances the oxidation resistance of SiC.In addition,the in situ generated non-oxide is uniformly dispersed on a micro-scale and bonds SiC stably.
基金supported by the National Natural Science Foundation of China(51834008,52022109,52274307,and 21804319)National Key Research and Development Program of China(2021YFC2901100)+1 种基金Science Foundation of China University of Petroleum,Beijing(2462022QZDX008,2462021QNX2010,2462020YXZZ019 and 2462020YXZZ016)State Key Laboratory of Heavy Oil Processing(HON-KFKT2022-10).
文摘A green environmental protection and enhanced leaching process was proposed to recover all elements from spent lithium iron phosphate(LiFePO_(4)) lithium batteries.In order to reduce the influence of Al impurity in the recovery process,NaOH was used to remove impurity.After impurity removal,the spent LiFePO_(4) cathode material was used as raw material under the H_(2)SO_(4) system,and the pressure oxidation leaching process was adopted to achieve the preferential leaching of lithium.The E-pH diagram of the Fe-P-Al-H_(2)O system can determine the stable region of each element in the recovery process of spent LiFePO_(4)Li-batteries.Under the optimal conditions(500 r·min^(-1),15 h,363.15 K,0.4 MPa,the liquid-solid ratio was 4:1 ml·g^(-1)and the acid-material ratio was 0.29),the leaching rate of Li was 99.24%,Fe,Al,and Ti were 0.10%,2.07%,and 0.03%,respectively.The Fe and P were precipitated and recovered as FePO_(4)·2H_(2)O.The kinetic analysis shows that the process of high-pressure acid leaching of spent LiFePO_(4) materials depends on the surface chemical reaction.Through the life cycle assessment(LCA)of the spent LiFePO_(4) whole recovery process,eight midpoint impact categories were selected to assess the impact of recovery process.The results can provide basic environmental information on production process for recycling industry.
基金supported by the National Key Research and Development Program of China(2021YFA1500500)。
文摘The highly selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dihydroxymethylfuran is an important reaction in the field of biomass hydrogenation,because it is a bridge between biomass resources and chemical industry.Here,we precisely constructed carbon nitride supported Pd-based catalysts by a simple impregnation-reduction method.By changing the reduction temperature,catalysts with different oxidation state could be precisely constructed.Moreover,the important correlation between the ratio of Pd^(0)/Pd^(2+)and catalytic activity is revealed during the selective hydrogenation of HMF.The Pd/g—C_(3)N_(4)—300 catalyst with a Pd^(0)/Pd^(2+)ratio of 3/2 showed the highest catalytic activity,which could get 96.9%5-hydroxymethylfurfural conversion and 90.3%2,5-dihydroxymethylfuran selectivity.Further density functional theory calculation revealed that the synergistic effect between Pd0and Pd2+in Pd/g—C_(3)N_(4)—300 system could boost the adsorption of the substrate and the dissociation of hydrogen.In this work,we highlight the important correlation between metal oxidation state and catalytic activity,which provides valuable insights for the rational design of precious metal catalysts for hydrogenation reactions.
基金support of National Natural Science Foundation of China(22179027)gratefully acknowledged.This work was also supported by the Natural Science Foundation of Guangxi Province(2021GXNSFAA075063,2018GXNSFDA281005)+1 种基金the National Key Research and Development Program of China(2017YFE0105500)Science&Technology Research Project of Guangdong Province(2017A020216009).
文摘Chemical-looping oxidative dehydrogenation(CL-ODH)is a process designed for the conversion of alkanes into olefins through cyclic redox reactions,eliminating the need for gaseous O_(2).In this work,we investigated the use of Ca_(2)MnO_(4)-layered perovskites modified with NaNO_(3) dopants,serving as redox catalysts(also known as oxygen carriers),for the CL-ODH of ethane within a temperature range of 700-780℃.Our findings revealed that the incorporation of NaNO_(3) as a modifier significantly-nhanced the selectivity for-thylene generation from Ca_(2)MnO_(4).At 750℃and a gas hourly space velocity of 1300 h^(-1),we achieved an-thane conversion up to 68.17%,accompanied by a corresponding-thylene yield of 57.39%.X-ray photoelectron spectroscopy analysis unveiled that the doping NaNO_(3) onto Ca_(2)MnO_(4) not only played a role in reducing the oxidation state of Mn ions but also increased the lattice oxygen content of the redox catalyst.Furthermore,formation of NaNO_(3) shell on the surface of Ca_(2)MnO_(4) led to a reduction in the concentration of manganese sites and modulated the oxygen-releasing behavior in a step-wise manner.This modulation contributed significantly to the enhanced selectivity for ethylene of the NaNO_(3)-doped Ca_(2)MnO_(4) catalyst.These findings provide compelling evidence for the potential of Ca_(2)MnO_(4)-layered perovskites as promising redox catalysts in the context of CL-ODH reactions.
基金funded by the National Key Research and Development Program of China ( 2018YFB1501704)the National Natural Science Foundation of China (22078018)the Beijing Natural Science Foundation (2222016)。
文摘The selective oxidation of 5-hydroxymethylfurfural(HMF) into 2,5-diformylfuran(DFF) is an important reaction for renewable biomass building blocks. Compared with thermal catalytic processes, photocatalytic production of DFF from HMF has attracted tremendous attention. Herein, the MoS_(2)/CdIn_(2)S_(4)(MC)flower-like heterojunctions were prepared and considered as photocatalysts for selective oxidation of HMF into DFF under visible-light irradiation in aqueous solution. Results demonstrated MoS_(2) in MC heterojunction could promote the separation of photoexcited electron-hole pairs, while the amount of MoS_(2) dropping was proved influenced on the photocatalytic performance. 80.93% of DFF selectivity was realized when using 12.5% MC as photocatalyst. In addition, the MC catalyst also showed great potential in transformation of other biomass derived benzyl-and furyl-alcohols. The catalytic mechanism suggested that ·O_(2)^(-) was the decisive active radical for HMF oxidation. Therefore, the MC heterojunction could be applied in photocatalytic conversion of biomass to valuable chemicals under ambient condition.
基金supported by the National Research Foundation of Korea(NRF)funded by the Korean government(MSIT)(No.2022R1A2C1006743)
文摘This work looked into the influence of the sealing treatment on the structural feature and electrochemical response of AZ31 Mg alloy coated via plasma electrolytic oxidation(PEO).Here,the inorganic layers produced by PEO in an alkaline-phosphate electrolyte were subsequently immersed for different periods in cold(60°C)and hot(100°C)aqueous solutions containing either 1 or 3 gr of cobalt nitrate hexahydrate in the presence of hydrogen peroxide as an initiator.The results showed that the sealing treatments in the hot solutions could trigger the hydration reactions of PEO coating which would largely assist the surface incorporation of Co_(3)O_(4)into the coating.In contrast,the sealing in cold solutions led to less compact coatings,which was attributed to the fact the hydration reactions would be restricted at 60°C.A nearly fully sealed coating with a porosity of~0.5%was successfully formed on the sample immersed in the hot solution containing 1 gr of cobalt nitrate hexahydrate.Thus,the electrochemical stability of this fully sealed coating was superior to the other samples as it had the lowest corrosion current density(4.71×10^(-10)A·cm^(-2))and the highest outer layer resistance(3.81×10^(7)Ω·cm^(2)).The composite coatings developed in this study are ideal for applications requiring high electrochemical stability.
基金Funded by the Youth Science and Technology Talent Growth Project of Education Department of Guizhou Province(No.KY[2018]145)。
文摘Cu-Mn_(3)O_(4)composite coating was prepared on the SUS 430 ferritic stainless steel by electrodeposition and then exposed in air at 800℃corresponding to the cathode atmosphere of solid oxide fuel cell(SOFC).A dual-layer oxide structure mainly comprising an external layer of CuO followed by(Cu,Mn,Fe)_(3)O_(4)spinel and an internal layer of Cr-rich oxide was thermally developed on the coated steel.The scale area-specific resistances(ASRs)of the coated steels were lower than the scale ASR of the uncoated steel after identical thermal exposure.The external layer of CuO/(Cu,Mn,Fe)_(3)O_(4)spinel not only served as a barrier to reduce the growth rate of Cr-rich oxide internal layer and to suppress the outward diffusion of Cr,but also lowered the surface scale ASRs considerably.
文摘The Sr/F co-doped CaP(Sr/F-CaP)coatings were prepared by micro-arc oxidation(MAO)under different voltages to modify the microstructure and corrosion behavior of Mg-4Zn-1Mn alloy.The surface and interface characteristics investigated using scanning electron microscopy(SEM)and energy dispersive X-ray spectrometer(EDS)showed that the MAO coatings displayed uneven crater-like holes and tiny cracks under lower voltage,while they exhibited relatively homogeneous crater-like holes without cracks under higher voltage.The thickness of MAO coatings increased with increasing voltage.The corrosion behavior of Mg-4Zn-1Mn alloy was improved by the MAO coatings.The MAO coatings prepared under 450 V and 500 V voltages possessed the best corrosion resistance with regard to the electrochemical corrosion tests and immersion corrosion tests,respectively.The MAO coatings fabricated under 450-500 V could provide a better corrosion protection effect for the substrate.
基金supported by the National Natural Science Foundation of China(21506194,21676255)the Provincial Natural Science Foundation of Zhejiang Province(LY16B070011)the Commission of Science and Technology of Zhejiang Province(2017C33106,2017C03007)~~
文摘Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improved the catalytic activity significantly.When using Pt/Ce-Zr-SO_4^(2-) with 10 wt%SO_4^(2-),the temperature for 90%conversion of propene and CO decreased by 75℃ compared with Pt/Ce-Zr.The conversion exceeded 95%at 240℃ even after 0.02%sulfur dioxide poisoning for 20 h.Temperature-programmed desorption of CO and X-ray photoelectron spectroscopy analyses revealed an improvement in Pt dispersion onto the Ce-Zr-SO_4^(2-) support,and the increased number of Pt particles built up more Pt^(-)-(SO_4^(2-))^(-) couples,which resulted in excellent activity.The increased total acidity and new Bronsted acid sites on the surface provided the Pt/Ce-Zr-SO_4^(2-) with good sulfur resistance.
文摘H3PO4 oxidation roasting followed by HCl acid leaching was proposed to remove magnesium and calcium from electric furnace titanium slag containing 3.12% MgO and 0.86% CaO. XRF, XRD and SEM techniques were used to characterize the composition, mineral phase component and microstructure of the titanium slag. The H3PO4 oxidation thermodynamic, mineral phase transformation, microstructure, element distribution in titanium slag during H3PO4 oxidation process and leaching process were investigated. The thermodynamic analysis indicated that H3PO4 could promote the decomposition of MgTi2O5 and CaSiO3. The results indicated that H3PO4 could effectively promote the transformation of titanium-bearing mineral to rutile and enrich the impurities in MxTi(3-x)O5 into phosphate which could be removed by acid leaching process. Under the studied conditions, the leaching rates of magnesium and calcium reached 94.68% and 87.19%, respectively. The acid leached slag containing 0.19% MgO and 0.13% CaO(mass fraction) was obtained.
基金The National Natural Science Foundation of China(No.51376046,51076030)the National Key Technology R&D Program of China during the 12th Five-Year Plan Period(No.2012BAA02B01)+2 种基金the United Creative Foundation of Jiangsu Province(No.BY2013073-10)the Fundamental Research Funds for the Central Universitiesthe Scientific Innovation Research of College Graduates in Jiangsu Province(CXZZ13_0093,KYLX_0115,KYLX_0184)
文摘In order to remove gas-phase mercury and NOx from flue gas, experimental studies on flue gas mercury oxidation removal and denitration of Guizhou anthracite combustion with NH4Br addition were carried out. The influence of NH4Br addition on the ignition temperature and combustion characteristics was studied using a thermogravimetric analyzer. The effects of the NHaBr addition amount on gas-phase mercury oxidation and removal were investigated in a bench scale of 6 kW fluidized bed combustor (FBC). Mercury concentrations in flue gas were determined by the Ontario hydro method (OHM) and the mercury mass balance was obtained. Results show that the NH4Br addition has little influence on the ignition temperature of Guizhou anthracite. With the mercury mass balance of 95.47%, the proportion of particulate mercury Hg^p, gaseous mercury Hg^0 and Hg^2+ are 75.28%, 11.60% and 13. 12%, respectively, as raw coal combustion. The high particulate mercury Hg^p in flue gas is caused by the high unburned carbon content in fly ash. When the NH4Br addition amount increases from 0 to 0. 3%, the concentration of gaseous Hg^0 and Hg^2+ in flue gas decreases continuously, leading to the Hg^p increase accordingly. The oxidation rate of Hg^0 is positively correlated to the Br addition amount. It demonstrates that coal combustion with NH4Br addition can promote Hg^0 oxidation and removal. NOx concentration in flue gas exhibits a descending trend with the NHaBr addition and the removal rate reaches 17.31% with the addition amount of 0.3%. Adding NH4Br to coal also plays a synergistic role in denitration.
基金the National Natural Science Foundation of China(Grant No.:81973305)the Science and Technology Planning Project of Guangzhou,China(Grant No.:201904010487)+1 种基金the Natural Science Foundation of Guangdong Province,China(Grant No.:2021A1515010897)the Discipline Construction Fund of Central People’s Hospital of Zhanjiang(Grant Nos.:2020A01 and 2020A02).
文摘Stroke is the second leading cause of death worldwide,and oxidative stress plays a crucial role.Celastrol exhibits strong antioxidant properties in several diseases;however,whether it can affect oxidation in cerebral ischemic-reperfusion injury(CIRI)remains unclear.This study aimed to determine whether celastrol could reduce oxidative damage during CIRI and to elucidate the underlying mechanisms.Here,we found that celastrol attenuated oxidative injury in CIRI by upregulating nuclear factor E2-related factor 2(Nrf2).Using alkynyl-tagged celastrol and liquid chromatography-tandem mass spectrometry,we showed that celastrol directly bound to neuronally expressed developmentally downregulated 4(Nedd4)and then released Nrf2 from Nedd4 in astrocytes.Nedd4 promoted the degradation of Nrf2 through K48-linked ubiquitination and thus contributed to astrocytic reactive oxygen species production in CIRI,which was significantly blocked by celastrol.Furthermore,by inhibiting oxidative stress and astrocyte activation,celastrol effectively rescued neurons from axon damage and apoptosis.Our study uncovered Nedd4 as a direct target of celastrol,and that celastrol exerts an antioxidative effect on astrocytes by inhibiting the interaction between Nedd4 and Nrf2 and reducing Nrf2 degradation in CIRI.