The 5G cellular network aims at providing three major services:Massive machine-type communication(mMTC),ultra-reliable low-latency communications(URLLC),and enhanced-mobile-broadband(eMBB).Among these services,the URL...The 5G cellular network aims at providing three major services:Massive machine-type communication(mMTC),ultra-reliable low-latency communications(URLLC),and enhanced-mobile-broadband(eMBB).Among these services,the URLLC and eMBB require strict end-to-end latency of 1 ms while maintaining 99.999%reliability,and availability of extremely high data rates for the users,respectively.One of the critical challenges in meeting these requirements is to upgrade the existing optical fiber backhaul network interconnecting the base stations with a multigigabit capacity,low latency and very high reliability system.To address this issue,we have numerically analyzed 100 Gbit/s coherent optical orthogonal frequency division multiplexing(CO-OFDM)transmission performance over 400 km single-mode fiber(SMF)and 100 km of multi-mode fiber(MMF)links.The system is simulated over optically repeated and non-repeated SMF and MMF links.Coherent transmission is used,and the system is analyzed in a linear and non-linear regime.The system performance is quantified by bit error ratio(BER).Spectrally efficient and optimal transmission performance is achieved for 400 km SMF and 100 km MMF link.The results designate thatMMF links can be employed beyond short reach applications by using them in the existing SMF infrastructure for long haul transmission.In particular,the proposed CO-OFDM system can be efficiently employed in 5G backhaul network.The multi-gigabit capacity and lower BER of the proposed system makes it a suitable candidate especially for the eMBB and URLLC requirements for 5G backhaul network.展开更多
The compensation effects of fiber nonlinearity in 112 Gb/s polarization division multiplexing(PDM) coherent optical systems by mid-span optical phase conjugation(OPC) based on four wave mixing(FWM) effect are st...The compensation effects of fiber nonlinearity in 112 Gb/s polarization division multiplexing(PDM) coherent optical systems by mid-span optical phase conjugation(OPC) based on four wave mixing(FWM) effect are studied. Comparisons of the compensation results between PDM coherent optical-orthogonal frequency division multiplexing(CO-OFDM)system and the single carrier(SC) PDM quadrature phase shift keying(QPSK) system are provided as well. The results demonstrate that nonlinear compensation effect with mid-span OPC in PDM CO-OFDM system is much more obvious than that in SC PDM QPSK system.展开更多
针对相干光正交频分复用(coherent optical orthogonal frequency division multiplexing,CO-OFDM)系统中相位噪声引起的载波间干扰(inter-carrier interference,ICI)问题,提出了一种基于线性预处理的新判决反馈相位噪声抑制算法。该新...针对相干光正交频分复用(coherent optical orthogonal frequency division multiplexing,CO-OFDM)系统中相位噪声引起的载波间干扰(inter-carrier interference,ICI)问题,提出了一种基于线性预处理的新判决反馈相位噪声抑制算法。该新算法改进了线性预处理部分,利用循环前缀与OFDM符号固有的相关性,在时域进行简单的线性组合运算,充分利用了OFDM符号中冗余信息。仿真分析表明,在激光器线宽为200 k Hz且误码率(bit error rate,BER)为10-4时,与判决反馈相位噪声抑制算法和一次迭代的判决反馈相位噪声抑制算法相比,该新算法BER曲线的信噪比(signal to noise ratio,SNR)分别改善了3 d B和1 d B,有效地降低由ICI引起的错误平层。展开更多
Aiming at the problem of the peak to average power ratio(PAPR)in coherent optical orthogonal frequency division multiplexing(CO-OFDM),a hybrid PAPR reduction technique of the CO-OFDM system by combining iterative part...Aiming at the problem of the peak to average power ratio(PAPR)in coherent optical orthogonal frequency division multiplexing(CO-OFDM),a hybrid PAPR reduction technique of the CO-OFDM system by combining iterative partial transmit sequence(IPTS)scheme with modified clipping and filtering(MCF)is proposed.The simulation results show that at the complementary cumulative distribution function(CCDF)of 10^(-4),the PAPR of proposed scheme is optimized by 1.86 d B and 2.13 d B compared with those of IPTS and CF schemes,respectively.Meanwhile,when the bit error rate(BER)is 10^(-3),the optical signal to noise ratio(OSNR)are optimized by 1.57 dB and 0.66 d B compared with those of CF and IPTS-CF schemes,respectively.展开更多
A novel symbol timing synchronization algorithm based on constant amplitude zero auto correlation(CAZAC) sequences is proposed for coherent optical orthogonal frequency division multiplexing(CO-OFDM) systems. The trai...A novel symbol timing synchronization algorithm based on constant amplitude zero auto correlation(CAZAC) sequences is proposed for coherent optical orthogonal frequency division multiplexing(CO-OFDM) systems. The training symbol of the proposed algorithm is comprised of four different parts, utilizing even symmetry property of each part to accomplish timing synchronization. The performance of the proposed algorithm is demonstrated by means of simulations in OFDM and CO-OFDM systems. The proposed algorithm is shown to eliminate the timing sidelobes of Park's algorithm and has a more accurate timing estimation. In the condition of chromatic dispersion(CD), the timing metric of the proposed method still maintains its peak value at the correct timing point, while the values are almost 0 at all the other positions. Meanwhile, the timing mean square error(MSE) of the proposed algorithm remains around 10^(-6).展开更多
基于实际的CO-OFDM光链路系统,结合Matlab工具进行数字信号处理。从单个子载波的误码率和所有子载波的平均误码率角度出发,实验分析LDPC码在系统中性能,实验结果显示采用LDPC码的系统的接收机灵敏度在误码率为1×10-4时可以提升5.9 ...基于实际的CO-OFDM光链路系统,结合Matlab工具进行数字信号处理。从单个子载波的误码率和所有子载波的平均误码率角度出发,实验分析LDPC码在系统中性能,实验结果显示采用LDPC码的系统的接收机灵敏度在误码率为1×10-4时可以提升5.9 d B。展开更多
This paper investigates the architecture of Tbits/s Wavelength Division Multiplexing (WDM) system by using a Coherent Optical Orthogonal Frequency Division Multiplexing (CO-OFDM) with 4-QAM for long haul transmissions...This paper investigates the architecture of Tbits/s Wavelength Division Multiplexing (WDM) system by using a Coherent Optical Orthogonal Frequency Division Multiplexing (CO-OFDM) with 4-QAM for long haul transmissions of 1800 Km SM. A simulation of 20 WDM channels spaced at 50 GHz, and 20 OFDM signals each with 50 Gbits/s bitrate to produce data rate of 1 Tbits/s is built. The system performance is studied by observing the constellation diagram of the signal and the relationship of BER and OSNR with regard to transmission distance. The results show that the BER increases as the transmission distance increases. Also, as the transmission distance increases, the OSNR needs to be increased to maintain BER in less than 10-3.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(Nos.2019R1A4A1023746,2019R1F1A1060799)the Strengthening R&D Capability Program of Sejong University。
文摘The 5G cellular network aims at providing three major services:Massive machine-type communication(mMTC),ultra-reliable low-latency communications(URLLC),and enhanced-mobile-broadband(eMBB).Among these services,the URLLC and eMBB require strict end-to-end latency of 1 ms while maintaining 99.999%reliability,and availability of extremely high data rates for the users,respectively.One of the critical challenges in meeting these requirements is to upgrade the existing optical fiber backhaul network interconnecting the base stations with a multigigabit capacity,low latency and very high reliability system.To address this issue,we have numerically analyzed 100 Gbit/s coherent optical orthogonal frequency division multiplexing(CO-OFDM)transmission performance over 400 km single-mode fiber(SMF)and 100 km of multi-mode fiber(MMF)links.The system is simulated over optically repeated and non-repeated SMF and MMF links.Coherent transmission is used,and the system is analyzed in a linear and non-linear regime.The system performance is quantified by bit error ratio(BER).Spectrally efficient and optimal transmission performance is achieved for 400 km SMF and 100 km MMF link.The results designate thatMMF links can be employed beyond short reach applications by using them in the existing SMF infrastructure for long haul transmission.In particular,the proposed CO-OFDM system can be efficiently employed in 5G backhaul network.The multi-gigabit capacity and lower BER of the proposed system makes it a suitable candidate especially for the eMBB and URLLC requirements for 5G backhaul network.
基金supported by the National Natural Science Foundation of China(Grant Nos.61271192,61427813,and 61331010)the National Basic Research Program of China(Grant No.2013AA013401)
文摘The compensation effects of fiber nonlinearity in 112 Gb/s polarization division multiplexing(PDM) coherent optical systems by mid-span optical phase conjugation(OPC) based on four wave mixing(FWM) effect are studied. Comparisons of the compensation results between PDM coherent optical-orthogonal frequency division multiplexing(CO-OFDM)system and the single carrier(SC) PDM quadrature phase shift keying(QPSK) system are provided as well. The results demonstrate that nonlinear compensation effect with mid-span OPC in PDM CO-OFDM system is much more obvious than that in SC PDM QPSK system.
文摘针对相干光正交频分复用(coherent optical orthogonal frequency division multiplexing,CO-OFDM)系统中相位噪声引起的载波间干扰(inter-carrier interference,ICI)问题,提出了一种基于线性预处理的新判决反馈相位噪声抑制算法。该新算法改进了线性预处理部分,利用循环前缀与OFDM符号固有的相关性,在时域进行简单的线性组合运算,充分利用了OFDM符号中冗余信息。仿真分析表明,在激光器线宽为200 k Hz且误码率(bit error rate,BER)为10-4时,与判决反馈相位噪声抑制算法和一次迭代的判决反馈相位噪声抑制算法相比,该新算法BER曲线的信噪比(signal to noise ratio,SNR)分别改善了3 d B和1 d B,有效地降低由ICI引起的错误平层。
基金supported by the National Natural Science Foundation of China(No.61475118)the State Key Laboratory on Integrated Optoelectronics of China(No.IOSKL2015KF06)the National High-Tech Research and Development Program of China(No.2013AA014201)
文摘Aiming at the problem of the peak to average power ratio(PAPR)in coherent optical orthogonal frequency division multiplexing(CO-OFDM),a hybrid PAPR reduction technique of the CO-OFDM system by combining iterative partial transmit sequence(IPTS)scheme with modified clipping and filtering(MCF)is proposed.The simulation results show that at the complementary cumulative distribution function(CCDF)of 10^(-4),the PAPR of proposed scheme is optimized by 1.86 d B and 2.13 d B compared with those of IPTS and CF schemes,respectively.Meanwhile,when the bit error rate(BER)is 10^(-3),the optical signal to noise ratio(OSNR)are optimized by 1.57 dB and 0.66 d B compared with those of CF and IPTS-CF schemes,respectively.
文摘A novel symbol timing synchronization algorithm based on constant amplitude zero auto correlation(CAZAC) sequences is proposed for coherent optical orthogonal frequency division multiplexing(CO-OFDM) systems. The training symbol of the proposed algorithm is comprised of four different parts, utilizing even symmetry property of each part to accomplish timing synchronization. The performance of the proposed algorithm is demonstrated by means of simulations in OFDM and CO-OFDM systems. The proposed algorithm is shown to eliminate the timing sidelobes of Park's algorithm and has a more accurate timing estimation. In the condition of chromatic dispersion(CD), the timing metric of the proposed method still maintains its peak value at the correct timing point, while the values are almost 0 at all the other positions. Meanwhile, the timing mean square error(MSE) of the proposed algorithm remains around 10^(-6).
文摘This paper investigates the architecture of Tbits/s Wavelength Division Multiplexing (WDM) system by using a Coherent Optical Orthogonal Frequency Division Multiplexing (CO-OFDM) with 4-QAM for long haul transmissions of 1800 Km SM. A simulation of 20 WDM channels spaced at 50 GHz, and 20 OFDM signals each with 50 Gbits/s bitrate to produce data rate of 1 Tbits/s is built. The system performance is studied by observing the constellation diagram of the signal and the relationship of BER and OSNR with regard to transmission distance. The results show that the BER increases as the transmission distance increases. Also, as the transmission distance increases, the OSNR needs to be increased to maintain BER in less than 10-3.