Foaming of polymers with CO2 has attracted increasing attention in polymer processing studies. Some of the fundamental properties of polymer/CO2 systems is discussed in this short review, including solubility and diff...Foaming of polymers with CO2 has attracted increasing attention in polymer processing studies. Some of the fundamental properties of polymer/CO2 systems is discussed in this short review, including solubility and diffusivity of CO2 in the polymer, polymer crystallization, interfacial tension between the polymer and the gas, and rheology of the CO2/polymers melt. These properties understandably affect the foaming process, and the structures of the foam products. Meanwhile, these properties can be changed via manipulation of CO2 in polymer. The proposed idea is to manipulate the foaming process and the foam structure by CO2-induced changes in these properties. Two cases from the authors' laboratory are presented for elucidating how to use the changes to manipulate the foaming process.展开更多
Electromagnetic (EM) wave pollution causing damage to precision equipment and threatening thehealth of living organisms has attracted considerable attention. Herein, promising microcellular foamedpolyamide 6 (PA6)/car...Electromagnetic (EM) wave pollution causing damage to precision equipment and threatening thehealth of living organisms has attracted considerable attention. Herein, promising microcellular foamedpolyamide 6 (PA6)/carbon nanotube (CNT) composites for highly efficient EM wave absorption were successfully fabricated using supercritical CO_(2) foaming. Nanocomposites foams with a void fraction rangingfrom 38.7% to 85.1% were achieved, providing a platform to assess the correlation of the electrical conductivity, the dielectric permittivity and the EM wave absorption properties with porosity. Notably, theFoam-257.5C sample with a void fraction of 38.7% exhibited outstanding EM wave absorption characteristics at a thickness of only 1.59 mm and an ultra-low reflection loss value of -55.3 dB (99.9997% wave absorption). Most importantly, the effective absorption bandwidth (EAB) of the Foam-257.5C sample couldcover the entire Ku band (12.4–18 GHz) by slightly adjusting the thickness from 1.20 to 1.60 mm. Thesuperior EM wave absorption performance of the Foam-257.5C sample was attributed to multiple reflections and scattering at the solid-gas interfaces, favorable impedance matching due to the existence ofa large polymer-air interface area, conductive loss near the interfaces and interfacial polarization. Thus,this study offers an eco-friendly, simple and versatile methodology to develop high-efficiency, flexiblepolymer-based EM wave absorbents.展开更多
基金the National Natural Science Foundation of China(Grant Nos.50703011,20976045,20976046)Shanghai Shuguang Project(08SG28)+1 种基金Fundamental Research Funds for the Central Universities,Program for Changjiang Scholars and Innovative Research Team in Universitythe 111 Project(B08021)
文摘Foaming of polymers with CO2 has attracted increasing attention in polymer processing studies. Some of the fundamental properties of polymer/CO2 systems is discussed in this short review, including solubility and diffusivity of CO2 in the polymer, polymer crystallization, interfacial tension between the polymer and the gas, and rheology of the CO2/polymers melt. These properties understandably affect the foaming process, and the structures of the foam products. Meanwhile, these properties can be changed via manipulation of CO2 in polymer. The proposed idea is to manipulate the foaming process and the foam structure by CO2-induced changes in these properties. Two cases from the authors' laboratory are presented for elucidating how to use the changes to manipulate the foaming process.
基金This work was funded by the National Key Research and Development Program of China(No.2016YFB0302200)the Key Research and Development Plan of Anhui Province(No.202104g01020003)+2 种基金the Fundamental Research Funds for the Central Universities(No.JKA012011002)the“111 Project”(No.B20031)Also,this research was supported by the China Scholarship Council(No.201906740084)during the work at the University of Toronto.Additional support was provided by Feringa Nobel Prize Scientist Joint Research Center.We would also like to gratefully thank Dr.Biao Zhao for assistance with electromagnetic data analysis in this research.Supplem。
文摘Electromagnetic (EM) wave pollution causing damage to precision equipment and threatening thehealth of living organisms has attracted considerable attention. Herein, promising microcellular foamedpolyamide 6 (PA6)/carbon nanotube (CNT) composites for highly efficient EM wave absorption were successfully fabricated using supercritical CO_(2) foaming. Nanocomposites foams with a void fraction rangingfrom 38.7% to 85.1% were achieved, providing a platform to assess the correlation of the electrical conductivity, the dielectric permittivity and the EM wave absorption properties with porosity. Notably, theFoam-257.5C sample with a void fraction of 38.7% exhibited outstanding EM wave absorption characteristics at a thickness of only 1.59 mm and an ultra-low reflection loss value of -55.3 dB (99.9997% wave absorption). Most importantly, the effective absorption bandwidth (EAB) of the Foam-257.5C sample couldcover the entire Ku band (12.4–18 GHz) by slightly adjusting the thickness from 1.20 to 1.60 mm. Thesuperior EM wave absorption performance of the Foam-257.5C sample was attributed to multiple reflections and scattering at the solid-gas interfaces, favorable impedance matching due to the existence ofa large polymer-air interface area, conductive loss near the interfaces and interfacial polarization. Thus,this study offers an eco-friendly, simple and versatile methodology to develop high-efficiency, flexiblepolymer-based EM wave absorbents.