Experiments of CO_2 splitting by dielectric barrier discharge(DBD) plasma were carried out, and the influence of CO_2 flow rate, plasma power, discharge voltage, discharge frequency on CO_2 conversion and process en...Experiments of CO_2 splitting by dielectric barrier discharge(DBD) plasma were carried out, and the influence of CO_2 flow rate, plasma power, discharge voltage, discharge frequency on CO_2 conversion and process energy efficiency were investigated. It was shown that the absolute quantity of CO_2 decomposed was only proportional to the amount of conductive electrons across the discharge gap,and the electron amount was proportional to the discharge power; the energy efficiency of CO_2 conversion was almost a constant at a lower level, which was limited by CO_2 inherent discharge character that determined a constant gap electric field strength. This was the main reason why CO_2 conversion rate decreased as the CO_2 flow rate increase and process energy efficiency was decreased a little as applied frequency increased. Therefore, one can improve the CO_2 conversion by less feed flow rate or larger discharge power in DBD plasma, but the energy efficiency is difficult to improve.展开更多
基金the support of National Natural Science Foundation of China(No.11375123)
文摘Experiments of CO_2 splitting by dielectric barrier discharge(DBD) plasma were carried out, and the influence of CO_2 flow rate, plasma power, discharge voltage, discharge frequency on CO_2 conversion and process energy efficiency were investigated. It was shown that the absolute quantity of CO_2 decomposed was only proportional to the amount of conductive electrons across the discharge gap,and the electron amount was proportional to the discharge power; the energy efficiency of CO_2 conversion was almost a constant at a lower level, which was limited by CO_2 inherent discharge character that determined a constant gap electric field strength. This was the main reason why CO_2 conversion rate decreased as the CO_2 flow rate increase and process energy efficiency was decreased a little as applied frequency increased. Therefore, one can improve the CO_2 conversion by less feed flow rate or larger discharge power in DBD plasma, but the energy efficiency is difficult to improve.