In the present research, 6-mm-thick 5083-H321 aluminum alloy was joined by the double-pulsed gas metal arc welding (DP-GMAW) process. The objective was to investigate the influence of the shielding gas composition o...In the present research, 6-mm-thick 5083-H321 aluminum alloy was joined by the double-pulsed gas metal arc welding (DP-GMAW) process. The objective was to investigate the influence of the shielding gas composition on the microstructure and properties of GMA welds. A macrostructural study indicated that the addition of nitrogen and oxygen to the argon shielding gas resulted in better weld penetration. Furthermore, the tensile strength and bending strength of the welds were improved when oxygen and nitrogen (at concentrations as high as approximately 0. 1vol%) were added to the shielding gas; however, these properties were adversely affected when the oxygen and nitrogen contents were increased further. This behavior was attributed to the formation of excessive brown and black oxide films on the bead surface, the formation of intermetallic compounds in the weld metal, and the formation of thicker oxide layers on the bead surface with increasing nitrogen and oxygen contents in the argon-based shielding gas. Analysis by energy-dispersive X-ray spectroscopy revealed that most of these compounds are nitrides or oxides.展开更多
Cable welding wire(CWW)CO2gas shielded welding is an innovative process arc welding with high efficiency,high quality and low consumption,in which cable wire is used as consumable electrode.CWW CO2gas shielded weldi...Cable welding wire(CWW)CO2gas shielded welding is an innovative process arc welding with high efficiency,high quality and low consumption,in which cable wire is used as consumable electrode.CWW CO2gas shielded welding and submerged arc welding(SAW)are used for contrast studies on processing property of high strength steel A36used in ship structure.The results show that the shapes of weld seam,using CWW CO2gas shielded welding and SAW,are good and no weld defect such as air hole,flaw,slag inclusion,incomplete fusion,lack of penetration and so on are found in the weld seam.Because the rotating of arc during CWW CO2gas shielded welding process has a strong stirring effect on molten pool,the grain in the heat affected zone(HAZ)of the joints,using CWW CO2 gas shielded welding,is small.Tensile failure positions of joints by CWW CO2gas shielded welding and SAW are all in the base metal,but tensile strength of CWW CO2gas shielded welding joint is higher than that of SAW joint by an average of 2.3%.The average impact energy of HAZ,using CWW CO2gas shielded welding and SAW,is almost equal,but the average impact energy of the weld seam using CWW CO2gas shielded welding is increased by 6%,and the average impact energy of the fusion line is increased by 7%.The 180°bending tests for the joints of CWW CO2 gas shielded welding and SAW are all qualified,and the joints hardness is all less than HV 355,but hardness of CWW CO2gas shielded welding wire welding joint near the fusion line is obviously lower.It can be concluded that the properties of CWW CO2gas shielded welding are better than those of the SAW joint,and CWW CO2gas shielded welding is suitable for welding high strength steel A36used in ship structure.展开更多
High nitrogen stainless steel(HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grad...High nitrogen stainless steel(HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance.Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties.The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding(SMAW), gas tungsten arc welding(GTAW), electron beam welding(EBW) and friction stir welding(FSW) processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds.Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds.Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.展开更多
Double shielded gas tungsten arc welding (GTAW, also known as tungsten inert gas (TIG) welding) of an SUS304 stainless steel with pure inert argon as the inner layer shielding and the At-CO2 or CO2 active gas as t...Double shielded gas tungsten arc welding (GTAW, also known as tungsten inert gas (TIG) welding) of an SUS304 stainless steel with pure inert argon as the inner layer shielding and the At-CO2 or CO2 active gas as the out layer shielding was proposed in this study to investigate its effect on the tungsten electrode protection and the weld shape variation. The experimental results showed that the inner inert argon gas can successfully prevent the outer layer active gas from contacting and oxidizing the tungsten electrode during the welding process. Active gas, carbon dioxide, in the outer layer shielding is decomposed in the arc and dissolves in the liquid pool, which effectively adjusts the active element, oxygen, content in the weld metal. When the weld metal oxygen content is over 70×10-6, the surface-tension induced Marangoni convection changes from outward into inward, and the weld shape varies from a wide shallow one to a narrow deep one. The effect of the inner layer gas flow rate on the weld bead morphology and the weld shape was investigated systematically. The results show that when the flow rate of the inner argon shielding gas is too low, the weld bead is easily oxidized and the weld shape is wide and shallow. A heavy continuous oxide layer on the liquid pool is a barrier to the liquid pool movement.展开更多
文摘In the present research, 6-mm-thick 5083-H321 aluminum alloy was joined by the double-pulsed gas metal arc welding (DP-GMAW) process. The objective was to investigate the influence of the shielding gas composition on the microstructure and properties of GMA welds. A macrostructural study indicated that the addition of nitrogen and oxygen to the argon shielding gas resulted in better weld penetration. Furthermore, the tensile strength and bending strength of the welds were improved when oxygen and nitrogen (at concentrations as high as approximately 0. 1vol%) were added to the shielding gas; however, these properties were adversely affected when the oxygen and nitrogen contents were increased further. This behavior was attributed to the formation of excessive brown and black oxide films on the bead surface, the formation of intermetallic compounds in the weld metal, and the formation of thicker oxide layers on the bead surface with increasing nitrogen and oxygen contents in the argon-based shielding gas. Analysis by energy-dispersive X-ray spectroscopy revealed that most of these compounds are nitrides or oxides.
基金Sponsored by National Natural Science Foundation of China(51275224,51005106)Prospective Joint Research Project ofJiangsu Province of China(BY2012184)
文摘Cable welding wire(CWW)CO2gas shielded welding is an innovative process arc welding with high efficiency,high quality and low consumption,in which cable wire is used as consumable electrode.CWW CO2gas shielded welding and submerged arc welding(SAW)are used for contrast studies on processing property of high strength steel A36used in ship structure.The results show that the shapes of weld seam,using CWW CO2gas shielded welding and SAW,are good and no weld defect such as air hole,flaw,slag inclusion,incomplete fusion,lack of penetration and so on are found in the weld seam.Because the rotating of arc during CWW CO2gas shielded welding process has a strong stirring effect on molten pool,the grain in the heat affected zone(HAZ)of the joints,using CWW CO2 gas shielded welding,is small.Tensile failure positions of joints by CWW CO2gas shielded welding and SAW are all in the base metal,but tensile strength of CWW CO2gas shielded welding joint is higher than that of SAW joint by an average of 2.3%.The average impact energy of HAZ,using CWW CO2gas shielded welding and SAW,is almost equal,but the average impact energy of the weld seam using CWW CO2gas shielded welding is increased by 6%,and the average impact energy of the fusion line is increased by 7%.The 180°bending tests for the joints of CWW CO2 gas shielded welding and SAW are all qualified,and the joints hardness is all less than HV 355,but hardness of CWW CO2gas shielded welding wire welding joint near the fusion line is obviously lower.It can be concluded that the properties of CWW CO2gas shielded welding are better than those of the SAW joint,and CWW CO2gas shielded welding is suitable for welding high strength steel A36used in ship structure.
文摘High nitrogen stainless steel(HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance.Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties.The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding(SMAW), gas tungsten arc welding(GTAW), electron beam welding(EBW) and friction stir welding(FSW) processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds.Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds.Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.
基金supported by the National Science Foundation of China under Grant No.50874101the Science Program of Shenyang City under Grand No.1071275-0-02
文摘Double shielded gas tungsten arc welding (GTAW, also known as tungsten inert gas (TIG) welding) of an SUS304 stainless steel with pure inert argon as the inner layer shielding and the At-CO2 or CO2 active gas as the out layer shielding was proposed in this study to investigate its effect on the tungsten electrode protection and the weld shape variation. The experimental results showed that the inner inert argon gas can successfully prevent the outer layer active gas from contacting and oxidizing the tungsten electrode during the welding process. Active gas, carbon dioxide, in the outer layer shielding is decomposed in the arc and dissolves in the liquid pool, which effectively adjusts the active element, oxygen, content in the weld metal. When the weld metal oxygen content is over 70×10-6, the surface-tension induced Marangoni convection changes from outward into inward, and the weld shape varies from a wide shallow one to a narrow deep one. The effect of the inner layer gas flow rate on the weld bead morphology and the weld shape was investigated systematically. The results show that when the flow rate of the inner argon shielding gas is too low, the weld bead is easily oxidized and the weld shape is wide and shallow. A heavy continuous oxide layer on the liquid pool is a barrier to the liquid pool movement.