期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Distinguished discriminatory separation of CO2 from its methane-containing gas mixture via PEBAX mixed matrix membrane 被引量:1
1
作者 Pouria Abbasszadeh Gamali Abbass Kazemi +4 位作者 Reza Zadmard Morteza Jalali Anjareghi Azadeh Rezakhani Reza Rahighi Mohammad Madani 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第1期73-80,共8页
Highly selective separation of CO_2 from its methane-containing binary gas mixture can be achieved by using Poly(ether-block-amide)(PEBAX)mixed matrix membranes(MMMs).According to FESEM and AFM analyses,silica-based n... Highly selective separation of CO_2 from its methane-containing binary gas mixture can be achieved by using Poly(ether-block-amide)(PEBAX)mixed matrix membranes(MMMs).According to FESEM and AFM analyses,silica-based nanoparticles were homogenously integrated within the polymer matrix,facilitating penetration of CO_2 through the membrane while acting as barrier for methane gas.The membrane containing 4.6 wt% fumed silica(FS)(PEBAX/4.6 wt%FS)exhibits astonishing selectivity results where binary gas mixture of CO_2/CH_4 was used as feed gas.As detected by gas chromatography,in the permeate side,data showed a significant increase of CO_2 permeance,while CH_4 transport through the mixed matrix membrane was not detectable.Moreover,PEBAX/4.6 wt%FS greatly exceeds the Robeson limit.According to data reported on CO_2/CH_4 gas pair separation in the literature,the results achieved in this work are beyond those data reported in the literature,particularly when PEBAX/4.6 wt%FS membrane was utilized. 展开更多
关键词 Mixed matrix membrane Fumed silica Binary gas mixture co2/CH4 separation
下载PDF
Development of CO2 Selective Poly(Ethylene Oxide)-Based Membranes: From Laboratory to Pilot Plant Scale 被引量:6
2
作者 Torsten Brinkmann Jelena Lilleparg +4 位作者 Heiko Notzke Jan Pohlmann Sergey Shishatskiy Jan Wind Thorsten Wolff 《Engineering》 SCIE EI 2017年第4期485-493,共9页
Membrane gas separation is one of the most promising technologies for the separation of carbon dioxide (CO2) from various gas streams. One application of this technology is the treatment of flue gases from combustio... Membrane gas separation is one of the most promising technologies for the separation of carbon dioxide (CO2) from various gas streams. One application of this technology is the treatment of flue gases from combustion processes for the purpose of carbon capture and storage. For this application, poly(ethylene oxide)-containing block copolymers such as Pebax or PolyActiveTM polymer are well suited. The thin-film composite membrane that is considered in this overview employs PolyActiveTM polymer as a selective layer material. The membrane shows excellent CO2 permeances of up to 4 m^3(STP).(m^2·h·bar)^-1 (1 bar = 105 Pa) at a carbon dioxide/nitrogen (CO2/N2) selectivity exceeding 55 at ambient temperature. The membrane can be manufactured reproducibly on a pilot scale and mounted into fiat-sheet membrane modules of different designs. The operating performance of these modules can be accurately predicted by specifically developed simulation tools, which employ single-gas permeation data as the only experimental input. The performance of membranes and modules was investigated in different pilot plant studies, in which flue gas and biogas were used as the feed gas streams. The investigated processes showed a stable separation performance, indicating the applicability of PolyActiveTM polymer as a membrane material for industrialscale gas processing. 展开更多
关键词 Gas permeation Thin-film composite membrane co2 separation Carbon capture and storage Biogas processing membrane modules
下载PDF
Enhanced gas separation performance of mixed matrix hollow fiber membranes containing post-functionalized S-MIL-53 被引量:6
3
作者 Haitao Zhu Xingming Jie +3 位作者 Lina Wang Guodong Kang Dandan Liu Yiming Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期781-790,共10页
Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and ... Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and membrane plasticization.Herein,lab-synthesized MIL-53 was post-functionalized by aminosilane grafting and subsequently incorporated into Ultem-1000 polymer matrix to fabricate high performance MMHFMs.SEM,DLS,XRD and TGA were performed to characterize silane-modified MIL-53(S-MIL-53)and prepared MMHFMs.Moreover,the effect of MOFs loading was systematically investigated first;then gas separation performance of MMHFMs for pure and mixed gas was evaluated under different pressures.MMHFMs containing post-functionalized S-MIL-53 achieved remarkable gas permeation properties which was better than model predictions.Compared to pure HFMs,CO2permeance of MMHFM loaded with 15%S-MIL-53 increased by 157%accompanying with 40%increase for CO2/N2selectivity,which outperformed the MMHFM filled with naked MIL-53.The pure and mixed gas permeation measurements with elevated feed pressure indicated that incorporation of S-MIL-53 also increased the resistance against CO2plasticization.This work reveals that post-modified MOFs embedded in MMHFMs facilitate the improvement of gas separation performance and suppression of membrane plasticization. 展开更多
关键词 Post-functionalized S-MIL-53 Mixed matrix hollow fiber membranes co2 permeance Plasticization Gas separation
下载PDF
CO_2/N_2 separation using supported ionic liquid membranes with green and cost-effective [Choline][Pro]/PEG200 mixtures 被引量:8
4
作者 Tengteng Fan Wenlong Xie +3 位作者 Xiaoyan Ji Chang Liu Xin Feng Xiaohua Lu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第11期1513-1521,共9页
The high price and toxicity of ionic liquids(ILs) have limited the design and application of supported ionic liquid membranes(SILMs) for CO_2 separation in both academic and industrial fields. In this work, [Choline][... The high price and toxicity of ionic liquids(ILs) have limited the design and application of supported ionic liquid membranes(SILMs) for CO_2 separation in both academic and industrial fields. In this work, [Choline][Pro]/polyethylene glycol 200(PEG200) mixtures were selected to prepare novel SILMs because of their green and costeffective characterization, and the CO_2/N_2 separation with the prepared SILMs was investigated experimentally at temperatures from 308.15 to 343.15 K. The temperature effect on the permeability, solubility and diffusivity of CO_2 was modeled with the Arrhenius equation. A competitive performance of the prepared SILMs was observed with high CO_2 permeability ranged in 343.3–1798.6 barrer and high CO_2/N_2 selectivity from 7.9 to 34.8.It was also found that the CO_2 permeability increased 3 times by decreasing the viscosity of liquids from 370 to38 m Pa·s. In addition, the inherent mechanism behind the significant permeability enhancement was revealed based on the diffusion-reaction theory, i.e. with the addition of PEG200, the overall resistance was substantially decreased and the SILMs process was switched from diffusion-control to reaction-control. 展开更多
关键词 co2/N2separation Supported ionic liquid membranes (SILMs) [Choline][Pro]/PEG200 Diffusion-reaction theory
全文增补中
Partial pore blockage and polymer chain rigidification phenomena in PEO/ZIF-8 mixed matrix membranes synthesized by in situ polymerization
5
作者 Xiaoli Ding Xu Li +4 位作者 Hongyong Zhao Ran Wang Runqing Zhao Hong Li Yuzhong Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第3期501-508,共8页
Nanostructured zeolitic imidazolate frameworks(ZIF-8) was incorporated into the mixture of poly(ethylene glycol) methyl ether acrylate(PEGMEA) and pentaerythritol triacrylate(PETA) to synthesize mixed matrix membranes... Nanostructured zeolitic imidazolate frameworks(ZIF-8) was incorporated into the mixture of poly(ethylene glycol) methyl ether acrylate(PEGMEA) and pentaerythritol triacrylate(PETA) to synthesize mixed matrix membranes(MMMs) by in situ polymerization for CO_2/CH_4 separation. The solvent-free polymerization between PEGMEA and PETA was induced by UV light with 1-hydroxylcyclohexyl phenyl ketone as initiator. The chemical structural characterization was performed by Fourier transform infrared spectroscopy. The morphology was characterized by scanning electron microscope. The average chain-to-chain distance of the polymer chains in MMMs was investigated by X-ray diffraction. The thermal property was evaluated by differential scanning calorimetry. The CH_4 and CO_2 gas transport properties of MMMs are reported. The relationship between gas permeation–separation performances or physical properties and ZIF-8 loading is also discussed. However, the permeation–separation performance was not improved in Robeson upper bound plot compared with original polymer membrane as predicted. The significant partial pore blockage and polymer rigidification effect around the ZIFs confirmed by the increase in glass temperature and the decrease in the d-spacing, were mainly responsible for the failure in performance improvement, which offset the high diffusion induced by porous ZIF-8. 展开更多
关键词 Mixed matrix membrane Partial pore blockage Polymer chain rigidification co2 separation
下载PDF
First membrane unit for separating CO_2 from natural gas operational
6
《Bulletin of the Chinese Academy of Sciences》 2007年第1期57-57,共1页
After a more-than-two-week trial operation, a new membrane unit based on the technology developed by researchers from the CAS Dalian Institute of
关键词 CO First membrane unit for separating co2 from natural gas operational
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部