期刊文献+
共找到732篇文章
< 1 2 37 >
每页显示 20 50 100
Molecular insight into the oil displacement mechanism of CO_(2) flooding in the nanopores of shale oil reservoir
1
作者 Xiao-Hu Dong Wen-Jing Xu +2 位作者 Hui-Qing Liu Zhang-Xing Chen Ning Lu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3516-3529,共14页
With the increasing demand for petroleum,shale oil with considerable reserves has become an important part of global oil resources.The shale oil reservoir has a large number of nanopores and a complicated mineral comp... With the increasing demand for petroleum,shale oil with considerable reserves has become an important part of global oil resources.The shale oil reservoir has a large number of nanopores and a complicated mineral composition,and the effect of nanopore confinement and pore type usually makes the effective development of shale oil challenging.For a shale oil reservoir,CO_(2) flooding can effectively reduce the oil viscosity and improve the reservoir properties,which can thus improve the recovery performance.In this study,the method of non-equilibrium molecular dynamics(NEMD)simulation is used to simulate the CO_(2) flooding process in the nanoscale pores of shale oil reservoir.The performance difference between the organic kerogen slit nanopore and four types of inorganic nanopores is discussed.Thus,the effects of nanopore type and displacement velocity on the nanoscale displacement behavior of CO_(2) are analyzed.Results indicate that the CO_(2) flooding process of different inorganic pores is different.In comparison,the displacement efficiency of light oil components is higher,and the transport distance is longer.The intermolecular interaction can significantly affect the CO_(2) displacement behavior in nanopores.The CO_(2) displacement efficiency is shown as montmorillonite,feldspar>quartz>calcite>kerogen.On the other hand,it is found that a lower displacement velocity can benefit the miscibility process between alkane and CO_(2),which is conducive to the overall displacement process of CO_(2).The displacement efficiency can significantly decrease with the increase in displacement velocity.But once the displacement velocity is very high,the strong driving force can promote the alkane to move forward,and the displacement efficiency will recover slightly.This study further reveals the microscopic oil displacement mechanism of CO_(2) in shale nanopores,which is of great significance for the effective development of shale oil reservoirs by using the method of CO_(2) injection. 展开更多
关键词 displacement behavior NANOPORES NEMD simulation Shale oil CO_(2) KEROGEN
下载PDF
Effect of stress sensitivity on displacement efficiency in CO_2 flooding for fractured low permeability reservoirs 被引量:4
2
作者 Wang Rui Yue Xiang'an +2 位作者 Zhao Renbao Yan Pingxiang Dave Freeman 《Petroleum Science》 SCIE CAS CSCD 2009年第3期277-283,共7页
Carbon dioxide flooding is an effective means of enhanced oil recovery for low permeability reservoirs. If fractures are present in the reservoir, CO2 may flow along the fractures, resulting in low gas displacement ef... Carbon dioxide flooding is an effective means of enhanced oil recovery for low permeability reservoirs. If fractures are present in the reservoir, CO2 may flow along the fractures, resulting in low gas displacement efficiency. Reservoir pore pressure will fluctuate to some extent during a CO2 flood, causing a change in effective confining pressure. The result is rock deformation and a reduction in permeability with the reduction in fracture permeability, causing increased flow resistance in the fracture space. Simultaneously, gas cross flowing along the fractures is partially restrained. In this work, the effect of stress changes on permeability was studied through a series of flow experiments. The change in the flowrate distribution in a matrix block and contained fracture with an increase in effective pressure were analyzed. The results lead to an implicit comparison which shows that permeability of fractured core decreases sharply with an increase in effective confining pressure. The fracture flowrate ratio declines and the matrix flowrate ratio increases. Fracture flow will partially divert to the matrix block with the increase in effective confining pressure, improving gas displacement efficiency. 展开更多
关键词 Stress sensitivity flowrate distribution MATRIX FRACTURE co2 flooding displacement efficiency
下载PDF
Study on Oil Displacement Efficiency of Binary Compound Flooding in Heterogeneous Reservoir 被引量:4
3
作者 Zhenzhong Fan Meng Wang +1 位作者 Jigang Jigang Xin Wang 《Energy and Power Engineering》 2015年第12期571-574,共4页
Heterogeneous reservoir characteristics for oilfield, choose HS-1 non-ionic surfactant and polymer formation in binary combination flooding system can significantly improve the rate of production of low permeability r... Heterogeneous reservoir characteristics for oilfield, choose HS-1 non-ionic surfactant and polymer formation in binary combination flooding system can significantly improve the rate of production of low permeability reservoir in heterogeneous reservoir. According to the core flooding experiment analyzed longitudinal heterogeneous models, single surfactant and a single polymer and polymer flooding of table binary complex drive effect. Studies show that binary combination flooding recovery effect is best, followed by polymer flooding, minimum of surfactant flooding, in heterogeneous reservoir. 展开更多
关键词 HETEROGENEOUS RESERVOIR BINARY COMPOUND flooding oil displacement Efficiency
下载PDF
Comparison of oil displacement mechanisms and performances between continuous and dispersed phase flooding agents 被引量:2
4
作者 SUN Zhe WU Xingcai +4 位作者 KANG Xiaodong LU Xiangguo LI Qiang JIANG Weidong ZHANG Jing 《Petroleum Exploration and Development》 2019年第1期121-129,共9页
To compare the oil displacement mechanisms and performances of continuous phase flooding agent(traditional polymer solution) and dispersed phase flooding agent(particle-type polymer SMG dispersion), the particle phase... To compare the oil displacement mechanisms and performances of continuous phase flooding agent(traditional polymer solution) and dispersed phase flooding agent(particle-type polymer SMG dispersion), the particle phase separation of SMG dispersion migrating in pores was simulated by using the microfluidic technology. Theoretically guided by the tree fork concentration distribution of red cells in biological fluid mechanics, the concentration distribution mathematical model of SMG in different pores is established. Furthermore, the micro and macro physical simulation experiments of continuous and dispersed phase flooding agents were carried out. The results show that the continuous flooding agent enters all the swept zones and increases the flow resistance in both larger and small pores. On the contrary, the particle phase separation phenomenon occurs during the injection process of dispersed flooding agent. The SMG particles gather in the larger pore to form bridge blinding, and the carrier fluid displace oil in the small pore. Working in cooperation, the SMG particle and carrier fluid drive the residual oil in the low permeability layers step by step and achieve the goal of enhanced oil recovery. The laboratory experimental results indicate that, the oil increment and water reduction effect of dispersed flooding agent is much better than that of continuous flooding agent, which is consistent with the field test results. 展开更多
关键词 POLYMER flooding particle-type POLYMER POLYMER water dispersion PARTICLE phase separation microfluidic technology deep fluid DIVERSION ability oil displacement mechanism
下载PDF
Investigation of feasibility of alkali-cosolvent flooding in heavy oil reservoirs
5
作者 Yi-Bo Li He-Fei Jia +3 位作者 Wan-Fen Pu Bing Wei Shuo-Shi Wang Na Yuan 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1608-1619,共12页
Cold production is a challenge in the case of heavy oil because of its high viscosity and poor fluidity in reservoir conditions.Alkali-cosolvent-polymer flooding is a type of microemulsion flooding with low costs and ... Cold production is a challenge in the case of heavy oil because of its high viscosity and poor fluidity in reservoir conditions.Alkali-cosolvent-polymer flooding is a type of microemulsion flooding with low costs and possible potential for heavy oil reservoirs.However,the addition of polymer may cause problems with injection in the case of highly viscous oil.Hence,in this study the feasibility of alkali-cosolvent(AC)flooding in heavy oil reservoirs was investigated via several groups of experiments.The interfacial tension between various AC formulations and heavy crude oil was measured to select appropriate formulations.Phase behavior tests were performed to determine the most appropriate formulation and conditions for the generation of a microemulsion.Sandpack flooding experiments were carried out to investigate the displacement efficiency of the selected Ac formulation.The results showed that the interfacial tension between an AC formulation and heavy oil could be reduced to below 1o-3 mN/m but differed greatly between different types of cosolvent.A butanol random polyether series displayed good performance in reducing the water-oil interfacial tension,which made it possible to form a Type Il microemulsion in reservoir conditions.According to the results of the phase behavior tests,the optimal salinity for different formulations with four cosolvent concentrations(0.5 wt%,1 wt%,2 wt%,and 3 wt%)was 4000,8000,14000,and 20000 ppm,respectively.The results of rheological measurements showed that Type Ill microemulsion had a viscosity that was ten times that of water.The results of sandpack flooding experiments showed that,in comparison with waterflooding,the injection of a certain Ac formulation slug could reduce the injection pressure.The pressure gradient during waterflooding and AC flooding was around 870 and 30-57 kPa/m,respectively.With the addition of an AC slug,the displacement efficiency was 30%-50%higher than in the case of waterflooding. 展开更多
关键词 Heavy oil MICROEMULSION Cold production Chemical flooding displacement efficiency
下载PDF
Characteristics and mechanism of smart fluid for sweep-controlling during CO_(2) flooding
6
作者 XIONG Chunming WEI Falin +5 位作者 YANG Haiyang ZHANG Song DING Bin LEI Zhengdong ZHANG Deping ZHOU Qiang 《Petroleum Exploration and Development》 SCIE 2023年第3期741-750,共10页
A smart response fluid was designed and developed to overcome the challenges of gas channeling during CO_(2)flooding in low-permeability,tight oil reservoirs.The fluid is based on Gemini surfactant with self-assembly ... A smart response fluid was designed and developed to overcome the challenges of gas channeling during CO_(2)flooding in low-permeability,tight oil reservoirs.The fluid is based on Gemini surfactant with self-assembly capabilities,and the tertiary amine group serves as the response component.The responsive characteristics and corresponding mechanism of the smart fluid during the interaction with CO_(2)/oil were studied,followed by the shear characteristics of the thickened aggregates obtained by the smart fluid responding to CO_(2).The temperature and salt resistance of the smart fluid and the aggregates were evaluated,and their feasibility and effectiveness in sweep-controlling during the CO_(2)flooding were confirmed.This research reveals:(1)Thickened aggregates could be assembled since the smart fluid interacted with CO_(2).When the mass fraction of the smart fluid ranged from 0.05%to 2.50%,the thickening ratio changed from 9 to 246,with viscosity reaching 13 to 3100 mPas.As a result,the sweep efficiency in low-permeability core models could be increased in our experiments.(2)When the smart fluid(0.5%to 1.0%)was exposed to simulated oil,the oil/fluid interfacial tension decreased to the level of 1×10^(-2)mN/m.Furthermore,the vesicle-like micelles in the smart fluid completely transformed into spherical micelles when the fluid was exposed to simulated oil with the saturation greater than 10%.As a result,the smart fluid could maintain low oil/fluid interfacial tension,and would not be thickened after oil exposure.(3)When the smart fluid interacted with CO_(2),the aggregates showed self-healing properties in terms of shear-thinning,static-thickening,and structural integrity after several shear-static cycles.Therefore,this fluid is safe to be placed in deep reservoirs.(4)The long-term temperature and salt resistance of the smart fluid and thickened aggregates have been confirmed. 展开更多
关键词 low-permeability reservoirs tight oil CO_(2)flooding sweep-controlling smart fluid fluid characteristics Gemini surfactant self-thickened SELF-HEALING
下载PDF
Advanced treatment of oil recovery wastewater from polymer flooding by UV/H_2O_2/O_3 and fine filtration 被引量:10
7
作者 REN Guang-meng SUN De-zhi Jong Shik CHUNK 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第1期29-32,共4页
In order to purify oil recovery wastewater from polymer flooding (ORWPF) in tertiary oil recovery in oil fields, advanced treatment of UV/H2O2/O3 and fine filtration were investigated. The experimental results showe... In order to purify oil recovery wastewater from polymer flooding (ORWPF) in tertiary oil recovery in oil fields, advanced treatment of UV/H2O2/O3 and fine filtration were investigated. The experimental results showed that polyacrylamide and oil remaining in ORWPF after the conventional treatment process could be effectively removed by UV/H2O2/O3 process. Fine filtration gave a high performance in eliminating suspended solids. The treated ORWPF can meet the quality requirement of the wastewater-bearing polymer injection in oilfield and be safely re-injected into oil reservoirs for oil recovery. 展开更多
关键词 oil recovery wastewater from polymer flooding UV/H2O2/O3 process POLYACRYLAMIDE
下载PDF
CO_2-triggered gelation for mobility control and channeling blocking during CO_2 flooding processes 被引量:6
8
作者 De-Xiang Li Liang Zhang +2 位作者 Yan-Min Liu Wan-Li Kang Shao-Ran Ren 《Petroleum Science》 SCIE CAS CSCD 2016年第2期247-258,共12页
CO2 flooding is regarded as an important method for enhanced oil recovery (EOR) and greenhouse gas control. However, the heterogeneity prevalently dis- tributed in reservoirs inhibits the performance of this technol... CO2 flooding is regarded as an important method for enhanced oil recovery (EOR) and greenhouse gas control. However, the heterogeneity prevalently dis- tributed in reservoirs inhibits the performance of this technology. The sweep efficiency can be significantly reduced especially in the presence of "thief zones". Hence, gas channeling blocking and mobility control are important technical issues for the success of CO2 injection. Normally, crosslinked gels have the potential to block gas channels, but the gelation time control poses challenges to this method. In this study, a new method for selectively blocking CO2 channeling is proposed, which is based on a type of CO2-sensitive gel system (modified polyacry- lamide-methenamine-resorcinol gel system) to form gel in situ. A CO2-sensitive gel system is when gelation or solidification will be triggered by CO2 in the reservoir to block gas channels. The CO2-sensitivity of the gel system was demonstrated in parallel bottle tests of gel in N2 and CO2 atmospheres. Sand pack flow experiments were con- ducted to investigate the shutoff capacity of the gel system under different conditions. The injectivity of the gel system was studied via viscosity measurements. The results indi- cate that this gel system was sensitive to CO2 and had good performance of channeling blocking in porous media. Advantageous viscosity-temperature characteristics were achieved in this work. The effectiveness for EOR in heterogeneous formations based on this gel system was demonstrated using displacement tests conducted in double sand packs. The experimental results can provide guideli- nes for the deployment of theCO2-sensitive gel system for field applications. 展开更多
关键词 co2 flooding Gas channeling - co2sensitivity - Sweep efficiency Enhanced oil recoveryMobility control
下载PDF
Research and Application of CO<sub>2</sub>Flooding Enhanced Oil Recovery in Low Permeability Oilfield 被引量:2
9
作者 Qigui Cheng Zhongxin Li +1 位作者 Guangshe Zhu Hongtao Zhang 《Open Journal of Geology》 2017年第9期1435-1440,共6页
This paper discusses the new progress and field application of CO2 flooding in low permeability reservoirs enhanced oil recovery. The study shows that CO2 flooding can improve the oil recovery rate of low permeability... This paper discusses the new progress and field application of CO2 flooding in low permeability reservoirs enhanced oil recovery. The study shows that CO2 flooding can improve the oil recovery rate of low permeability oilfield by more than 10%. The practice shows that the liquid CO2 injection in low permeability reservoir is easier than water injection, and the reservoir generally has better CO2 storage. 展开更多
关键词 Low PERMEABILITY oil Field co2 flooding Enhanced oil RECOVERY Storage
下载PDF
Study on the Variation Rule of Produced Oil Components during CO_(2) Flooding in Low Permeability Reservoirs
10
作者 Ganggang Hou Tongjing Liu +2 位作者 Xinyu Yuan Jirui Hou Pengxiang Diwu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第6期1223-1246,共24页
CO_(2) flooding has been widely studied and applied to improve oil recovery from low permeability reservoirs.Both the experimental results and the oilfield production data indicate that produced oil components(POC)wil... CO_(2) flooding has been widely studied and applied to improve oil recovery from low permeability reservoirs.Both the experimental results and the oilfield production data indicate that produced oil components(POC)will vary during CO_(2) flooding in low permeability reservoirs.However,the present researches fail to explain the variation reason and rule.In this study,the physical model of the POC variation during CO_(2) flooding in low permeability reservoir was established,and the variation reason and rule were defined.To verify the correctness of the physical model,the interaction rule of the oil-CO_(2) system was studied by related experiments.The numerical model,including 34 components,was established based on the precise experiments matching,and simulated the POC variation during CO_(2) flooding in low permeability reservoir at different inter-well reservoir characteristics.The POC monitoring data of the CO_(2) flooding pilot test area in northeastern China were analyzed,and the POC variation rule during the oilfield production was obtained.The research results indicated that the existence of the inter-well channeling-path and the permeability difference between matrix and channeling-path are the main reasons for the POC variation during CO_(2) flooding in low permeability reservoirs.The POC variation rules are not the same at different inter-well reservoir characteristics.For the low permeability reservoirs with homogeneous inter-well reservoir,the variation of the light hydrocarbon content in POC increases initially followed by a decrease,while the variation of the heavy hydrocarbon content in POC is completely opposite.The carbon number of the most abundant component in POC will gradually increase.For the low permeability reservoirs with the channeling-path existing in the inter-well reservoir,the variation rule of the light hydrocarbon content in POC is increase-decrease-increase-decrease,while the variation rule of the heavy hydrocarbon content in POC is completely opposite.The carbon number variation rule of the most abundant component in POC is increase-decrease-increase. 展开更多
关键词 Low permeability reservoir CO_(2)flooding produced oil component inter-well reservoirs characteristic
下载PDF
CO2 assisted steam flooding in late steam flooding in heavy oil reservoirs
11
作者 XI Changfeng QI Zongyao +7 位作者 ZHANG Yunjun LIU Tong SHEN Dehuang MU Hetaer DONG Hong LI Xiuluan JIANG Youwei WANG Hongzhuang 《Petroleum Exploration and Development》 2019年第6期1242-1250,共9页
To improve the oil recovery and economic efficiency in heavy oil reservoirs in late steam flooding,taking J6 Block of Xinjiang Oilfield as the research object,3D physical modeling experiments of steam flooding,CO2-foa... To improve the oil recovery and economic efficiency in heavy oil reservoirs in late steam flooding,taking J6 Block of Xinjiang Oilfield as the research object,3D physical modeling experiments of steam flooding,CO2-foam assisted steam flooding,and CO2 assisted steam flooding under different perforation conditions are conducted,and CO2-assisted steam flooding is proposed for reservoirs in the late stage of steam flooding.The experimental results show that after adjusting the perforation in late steam flooding,the CO2 assisted steam flooding formed a lateral expansion of the steam chamber in the middle and lower parts of the injection well and a development mode for the production of overriding gravity oil drainage in the top chamber of the production well;high temperature water,oil,and CO2 formed stable low-viscosity quasi-single-phase emulsified fluid;and CO2 acted as a thermal insulation in the steam chamber at the top,reduced the steam partial pressure inside the steam chamber,and effectively improved the heat efficiency of injected steam.Based on the three-dimensional physical experiments and the developed situation of the J6 block in Xinjiang Oilfield,the CO2 assisted steam flooding for the J6 block was designed.The application showed that the CO2 assisted steam flooding made the oil vapor ratio increase from 0.12 to 0.16 by 34.0%,the oil recovery increase from 16.1%to 21.5%,and the final oil recovery goes up to 66.5%compared to steam flooding after perforation adjustment. 展开更多
关键词 heavy oil reservoir three-dimensional physical simulation experiment STEAM flooding co2 ASSISTED STEAM flooding STEAM CHAMBER steam(co2)chamber overriding gravity drainage
下载PDF
运移距离对CO_(2)混相驱重力超覆的影响规律及表征分析 被引量:1
12
作者 赵凤兰 王雨 +3 位作者 黄世军 宋黎光 刘淼淼 王聪 《科学技术与工程》 北大核心 2024年第3期1021-1028,共8页
CO_(2)驱油技术具有提高原油采收率和资源化利用与封存的双重目的,已在低渗-致密油藏得到广泛应用。为明确运移距离对CO_(2)混相驱油过程中密度差引起的重力超覆程度的影响规律,分别采用室内物理模型和数值模型开展研究。实验结果表明,... CO_(2)驱油技术具有提高原油采收率和资源化利用与封存的双重目的,已在低渗-致密油藏得到广泛应用。为明确运移距离对CO_(2)混相驱油过程中密度差引起的重力超覆程度的影响规律,分别采用室内物理模型和数值模型开展研究。实验结果表明,混相条件下,由于岩心长度减小,重力超覆的扩展空间受限,但油气混相程度的降低,导致重力超覆程度降低幅度较小;当岩心长度继续减小时,混相程度降低对重力超覆的影响大于岩心长度对重力超覆扩展空间限制的影响,从而使重力超覆程度加剧。数模结果表明,随着运移距离的减小,重力超覆程度减弱,混相驱采收率提高。因此,结合油田现场情况,为减缓重力超覆,应适当减小井距,缩短CO_(2)气体运移距离,从而提高CO_(2)驱的波及效率。研究结果对于CO_(2)驱油现场试验方案设计和参数优化具有一定的指导意义。 展开更多
关键词 碳捕集利用与封存 重力超覆 运移距离 井距优化 CO_(2)驱油
下载PDF
低渗砂岩油田CO_(2)驱化学机理及提高采收率研究
13
作者 吴向阳 李建勋 +2 位作者 李刚 梅艳 金戈 《当代化工》 CAS 2024年第2期362-365,371,共5页
针对低渗砂岩油藏进行了CO_(2)驱开发技术研究,分析了CO_(2)驱油化学机理及主要影响因素。基于目标油藏流体特征进行了PVT拟合,确定其CO_(2)驱最小混相压力,明确了不同压力及注入时机对CO_(2)驱采收率、气油比、含水率及驱动压差等的影... 针对低渗砂岩油藏进行了CO_(2)驱开发技术研究,分析了CO_(2)驱油化学机理及主要影响因素。基于目标油藏流体特征进行了PVT拟合,确定其CO_(2)驱最小混相压力,明确了不同压力及注入时机对CO_(2)驱采收率、气油比、含水率及驱动压差等的影响规律,探究了CO_(2)泡沫驱在提高采收率方面的效用。结果表明:24.5 MPa为目标区域CO_(2)驱的最小混相压力,采收率会随着压力的升高而增加,28 MPa时CO_(2)驱提高采收率可达30.57%。气体突破时间、总采收率与CO_(2)注入时机密切相关,CO_(2)注入越早,越有利于采收率的提高,出口含水率为60%时注入可提高采收率39.13%。CO_(2)泡沫驱可以在一定程度上起到提高采收率的效用。 展开更多
关键词 低渗砂岩油藏 CO_(2)驱 注入时机 提高采收率
下载PDF
苏北盆地江苏油田CO_(2)驱油技术进展及应用
14
作者 唐建东 王智林 葛政俊 《油气藏评价与开发》 CSCD 北大核心 2024年第1期18-25,F0002,共9页
CCUS(碳捕集、利用与封存)技术对绿色低碳转型、实现“双碳”目标意义重大,而CO_(2)驱油埋存是其重要内容。苏北盆地江苏油田针对复杂断块油藏提高采收率的技术瓶颈开展CO_(2)驱油技术攻关及多种类型矿场试验,形成了以重力稳定驱、驱吐... CCUS(碳捕集、利用与封存)技术对绿色低碳转型、实现“双碳”目标意义重大,而CO_(2)驱油埋存是其重要内容。苏北盆地江苏油田针对复杂断块油藏提高采收率的技术瓶颈开展CO_(2)驱油技术攻关及多种类型矿场试验,形成了以重力稳定驱、驱吐协同等为特点的复杂断块油藏CO_(2)驱油的4种差异化模式,成功开展了花26断块“仿水平井”重力稳定驱等技术先导试验,建成了10×10^(4) t的复杂断块油藏CCUS示范工程。江苏油田累计注入液碳量30.34×10^(4) t,累计增油量9.83×10^(4) t,实现了较好的增产效果及经济效益。技术研究及试验可为其他复杂断块油藏的CO_(2)驱开发提供参考借鉴。 展开更多
关键词 复杂断块 CO_(2)驱油模式 重力稳定驱 提高采收率 CO_(2)封存
下载PDF
Gas channeling control with an in-situ smart surfactant gel during water-alternating-CO_(2) enhanced oil recovery 被引量:1
15
作者 Xin-Jie Luo Bing Wei +6 位作者 Ke Gao Bo Jing Bo Huang Ping Guo Hong-Yao Yin Yu-Jun Feng Xi Zhang 《Petroleum Science》 SCIE EI CSCD 2023年第5期2835-2851,共17页
Undesirable gas channeling always occurs along the high-permeability layers in heterogeneous oil reservoirs during water-alternating-CO_(2)(WAG)flooding,and conventional polymer gels used for blocking the“channeling... Undesirable gas channeling always occurs along the high-permeability layers in heterogeneous oil reservoirs during water-alternating-CO_(2)(WAG)flooding,and conventional polymer gels used for blocking the“channeling”paths usually suffer from either low injectivity or poor gelation control.Herein,we for the first time developed an in-situ high-pressure CO_(2)-triggered gel system based on a smart surfactant,N-erucamidopropyl-N,N-dimethylamine(UC22AMPM),which was introduced into the aqueous slugs to control gas channeling inWAG processes.The water-like,low-viscosity UC22AMPM brine solution can be thickened by high-pressure CO_(2) owing to the formation of wormlike micelles(WLMs),as well as their growth and shear-induced structure buildup under shear flow.The thickening power can be further potentiated by the generation of denser WLMs resulting from either surfactant concentration augmentation or a certain range of heating,and can be impaired via pressurization above the critical pressure of CO_(2) because of its soaring solvent power.Core flooding tests using heterogeneous cores demonstrated that gas channeling was alleviated by plugging of high-capacity channels due to the in-situ gelation of UC22AMPM slugs upon their reaction with the pre-or post-injected CO_(2) slugs under shear flow,thereupon driving chase fluids into unrecovered low-permeability areas and producing an 8.0% higher oil recovery factor than the conventional WAG mode.This smart surfactant enabled high injectivity and satisfactory gelation control,attributable to low initial viscosity and the combined properties of one component and CO_(2)-triggered gelation,respectively.This work could provide a guide towards designing gels for reducing CO_(2) spillover and reinforcing the CO_(2) sequestration effect during CO_(2) enhanced oil recovery processes. 展开更多
关键词 CO_(2)flooding Enhanced oil recovery Gas channeling Water-alternating-CO_(2) Smart surfactant GEL
下载PDF
Displacement characteristics of CO_(2)flooding in extra-high water-cut reservoirs
16
作者 Rui Wang Yaxiong Zhang +3 位作者 Chengyuan Lyu Zengmin Lun Maolei Cui Dongjiang Lang 《Energy Geoscience》 EI 2024年第1期212-218,共7页
Carbon dioxide(CO_(2))flooding is a widely applied recovery method during the tertiary recovery of oil and gas.A high water saturation condition in reservoirs could induce a‘water shielding’phenomenon after the inje... Carbon dioxide(CO_(2))flooding is a widely applied recovery method during the tertiary recovery of oil and gas.A high water saturation condition in reservoirs could induce a‘water shielding’phenomenon after the injection of CO_(2).This would prevent contact between the injected gas and the residual oil,restricting the development of the miscible zone.A micro-visual experiment of dead-end models,used to observe the effect of a film of water on the miscibility process,indicates that CO_(2)can penetrate the water film and come into contact with the residual oil,although the mixing is significantly delayed.However,the dissolution loss of CO_(2)at high water-cut conditions is not negligible.The oil-water partition coefficient,defined as the ratio of CO_(2)solubility in an oil-brine/two-phase system,keeps constant for specific reservoir conditions and changes little with an injection gas.The NMR device shows that when CO_(2)flooding follows water flooding,the residual oil decreasesdnot only in medium and large pores but also in small and micro pores.At levels of higher water saturation,CO_(2)displacement is characterized initially by a low oil production rate and high water-cut.After the CO_(2)breakthrough,the water-cut decreases sharply and the oil production rate increases gradually.The response time of CO_(2)flooding at high watercut reservoirs is typically delayed and prolonged.These results were confirmed in a pilot test for CO_(2)flooding at the P1-1 well group of the Pucheng Oilfield.Observations from this pilot study also suggest that a larger injection gas pore volume available for CO_(2)injection is required to offset the dissolution loss in high water saturation conditions. 展开更多
关键词 displacement characteristics CO_(2)flooding Water shield phenomenon oil-water partition coefficient Response time High water-cut
下载PDF
夹层型页岩油储层CO_(2)驱替特征——以鄂尔多斯盆地长7页岩为例
17
作者 姚兰兰 杨正明 +4 位作者 李海波 周体尧 张亚蒲 杜猛 侯海涛 《大庆石油地质与开发》 CAS 北大核心 2024年第2期101-107,共7页
针对鄂尔多斯盆地长7夹层型页岩油储层动用困难的问题,利用一维、二维核磁共振技术评价方法,从微观角度对页岩油注CO_(2)驱替特征进行研究。结果表明:随着驱替流量的增加,驱油效率增大,中孔与大孔驱油效率贡献也增大,绝对驱油贡献率均在... 针对鄂尔多斯盆地长7夹层型页岩油储层动用困难的问题,利用一维、二维核磁共振技术评价方法,从微观角度对页岩油注CO_(2)驱替特征进行研究。结果表明:随着驱替流量的增加,驱油效率增大,中孔与大孔驱油效率贡献也增大,绝对驱油贡献率均在60%以上;增大驱替流量可以显著提高基质渗透率较小的岩样驱油效率;岩样赋存状态以游离油为主,饱和原油后体积分数为40.51%~62.40%,驱替过程中游离油相对驱替体积分数在50%以上;随着驱替流量的增大,游离油/吸附油相对驱替体积分数减小;干样渗透率越大,渗透率随驱替流量的增长速率也越大。研究成果为页岩油有效开发提供理论依据。 展开更多
关键词 页岩油 CO_(2)驱替 核磁共振 驱替特征 赋存状态 储层动用
下载PDF
Visualization of CO_2 and oil immiscible and miscible flow processes in porous media using NMR micro-imaging 被引量:9
18
作者 Zhao Yuechao SongYongchen Liu Yu Jiang Lanlan Zhu Ningjun 《Petroleum Science》 SCIE CAS CSCD 2011年第2期183-193,共11页
CO2 flooding is considered not only one of the most effective enhanced oil recovery (EOR) methods, but also an important alternative for geological CO2 storage. In this paper, the visualization of CO2 flooding was s... CO2 flooding is considered not only one of the most effective enhanced oil recovery (EOR) methods, but also an important alternative for geological CO2 storage. In this paper, the visualization of CO2 flooding was studied using a 400 MHz NMR micro-imaging system. For gaseous CO2 immiscible displacement, it was found that CO2 channeling or fingering occurred due to the difference of fluid viscosity and density. Thus, the sweep efficiency was small and the final residual oil saturation was 53.1%. For supercritical CO2 miscible displacement, the results showed that piston-like displacement occurred, viscous fingering and the gravity override caused by the low viscosity and density of the gas was effectively restrained, and the velocity of CO2 front was uniform. The sweep efficiency was so high that the final residual oil saturation was 33.9%, which indicated CO2 miscible displacement could enhance oil recovery more than CO2 immiscible displacement. In addition, the average velocity of CO2 front was evaluated through analyzing the oil saturation profile. A special core analysis method has been applied to in-situ oil saturation data to directly evaluate the local Darcy phase velocities and capillary dispersion rate. 展开更多
关键词 NMR micro-imaging porous media co2 flooding enhanced oil recovery saturation
下载PDF
大庆油田CO_(2)驱油技术研究试验进展与展望
19
作者 程杰成 白军辉 +7 位作者 李玉春 刘勇 李国 孟岚 杨铁军 贾世华 韩重莲 李佳伟 《大庆石油地质与开发》 CAS 北大核心 2024年第4期6-14,共9页
CO_(2)驱油技术具有驱油经济效益与减排社会效益兼得的显著优势,随着国家双碳战略目标的提出,该项技术得到了越来越多的关注。大庆油田开展CO_(2)驱油技术的研究较早,CO_(2)非混相驱应用规模长期保持国内领先水平。论文系统总结了大庆油... CO_(2)驱油技术具有驱油经济效益与减排社会效益兼得的显著优势,随着国家双碳战略目标的提出,该项技术得到了越来越多的关注。大庆油田开展CO_(2)驱油技术的研究较早,CO_(2)非混相驱应用规模长期保持国内领先水平。论文系统总结了大庆油田CO_(2)非混相驱开发设计、跟踪调整及分层注入等理论技术成果,介绍了特低渗透榆树林油田CO_(2)非混相驱工业化试验、中低渗敖南油田CO_(2)驱先导试验及古龙页岩油藏CO_(2)驱试注试验,展望了大庆油田CO_(2)驱油与埋存技术的应用前景及不同类型油藏技术攻关方向。研究成果可为国内同类型油藏CO_(2)驱油与埋存技术的研究与应用提供借鉴。 展开更多
关键词 大庆油田 CO_(2)驱 提高采收率 矿场试验 研究进展
下载PDF
致密油藏CO_(2)驱和水驱分子动力学模拟及微观机理
20
作者 黄鑫淼 林伟 +2 位作者 韩登林 雷征东 赵新礼 《西安石油大学学报(自然科学版)》 CAS 北大核心 2024年第3期72-81,共10页
为了厘清CO_(2)驱和水驱两种驱替介质的微观驱油机理,基于分子动力学模拟方法,分别建立CO_(2)驱油模型和水驱油模型,研究不同驱替条件下亲水纳米孔隙内原油密度随驱替时间的变化规律,分析了驱油过程中烃类分子在纳米孔隙内的运移过程。... 为了厘清CO_(2)驱和水驱两种驱替介质的微观驱油机理,基于分子动力学模拟方法,分别建立CO_(2)驱油模型和水驱油模型,研究不同驱替条件下亲水纳米孔隙内原油密度随驱替时间的变化规律,分析了驱油过程中烃类分子在纳米孔隙内的运移过程。研究结果表明:两种不同注入介质的驱油效率都随着注入速度的增大而增大;在CO_(2)驱油过程中,当注入速度较小时,CO_(2)膨胀发挥主要作用,随着注入速度增大,驱替逐渐发挥主导作用;在亲水纳米孔隙中,当注入水的速度较低时,渗吸发挥主要作用,此时小孔隙中的原油驱替速度比大孔隙快,随着注入速度增大,驱替逐渐发挥主导作用,大孔隙中的原油被快速驱替。 展开更多
关键词 CO_(2)驱油 水驱油 分子动力学 致密油藏
下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部