CaO-based sorbent is considered to be a promising candidate for capturing CO_2 at high temperature. However,the adsorption capacity of CaO decreases sharply with the increase of the carbonation/calcination cycles. In ...CaO-based sorbent is considered to be a promising candidate for capturing CO_2 at high temperature. However,the adsorption capacity of CaO decreases sharply with the increase of the carbonation/calcination cycles. In this study, CaO was derived from calcium acetate(CaAc_2), which was doped with different elements(Mg, Al,Ce, Zr and La) to improve the cyclic stability. The carbonation conversion and cyclic stability of sorbents were tested by thermogravimetric analyzer(TGA). The sorbents were characterized by N_2 isothermal adsorption measurements, scanning electron microscopy(SEM) and X-ray diffraction(XRD). The results showed that the cyclic stabilities of all modified sorbents were improved by doping elements, while the carbonation conversions of sorbents in the 1st cycle were not increased by doping different elements. After 22 cycles, the cyclic stabilities of CaO–Al, CaO–Ce and CaO–La were above 96.2%. After 110 cycles, the cyclic stability of CaO–Al was still as high as 87.1%. Furthermore, the carbonation conversion was closely related to the critical time and specific surface area.展开更多
A kind of industrial solid waste, i.e., carbide slag, was used as CaO precursor to synthesize CO2 sorbent. The highly reactive synthetic sorbent was prepared from carbide slag, aluminum nitrate hydrate and glycerol wa...A kind of industrial solid waste, i.e., carbide slag, was used as CaO precursor to synthesize CO2 sorbent. The highly reactive synthetic sorbent was prepared from carbide slag, aluminum nitrate hydrate and glycerol water solution by the combustion synthesis method. The results show that the synthetic sorbent exhibits a much higher CO2 capture capacity compared with carbide slag. The CO2 capture capacity and the carbonation conversion of the synthetic sorbent are 0. 38 g/g and 0. 70 after 50 cycles, which are 1.8 and 2. 1 times those of carbide slag. The average carbonation conversion and the CO2 capture efficiency of the synthetic sorbent are higher than those of carbide slag with the same sorbent flow ratios. The required sorbent flow ratios are lower for synthetic sorbent to achieve the same CO2 capture efficiency compared with carbide slag. With the same sorbent flow ratio and CO2 capture efficiency, the energy requirement in calciner for the synthetic sorbent is less than that for carbide slag.展开更多
基金Supported by Capture CO_2 and Storage Technology Jointly Studied by USA and China(2013DFB60140-04)Northwest University Graduate Innovative Talent Training Project(YZZ12036)
文摘CaO-based sorbent is considered to be a promising candidate for capturing CO_2 at high temperature. However,the adsorption capacity of CaO decreases sharply with the increase of the carbonation/calcination cycles. In this study, CaO was derived from calcium acetate(CaAc_2), which was doped with different elements(Mg, Al,Ce, Zr and La) to improve the cyclic stability. The carbonation conversion and cyclic stability of sorbents were tested by thermogravimetric analyzer(TGA). The sorbents were characterized by N_2 isothermal adsorption measurements, scanning electron microscopy(SEM) and X-ray diffraction(XRD). The results showed that the cyclic stabilities of all modified sorbents were improved by doping elements, while the carbonation conversions of sorbents in the 1st cycle were not increased by doping different elements. After 22 cycles, the cyclic stabilities of CaO–Al, CaO–Ce and CaO–La were above 96.2%. After 110 cycles, the cyclic stability of CaO–Al was still as high as 87.1%. Furthermore, the carbonation conversion was closely related to the critical time and specific surface area.
基金The National Natural Science Foundation of China(No.51376003)
文摘A kind of industrial solid waste, i.e., carbide slag, was used as CaO precursor to synthesize CO2 sorbent. The highly reactive synthetic sorbent was prepared from carbide slag, aluminum nitrate hydrate and glycerol water solution by the combustion synthesis method. The results show that the synthetic sorbent exhibits a much higher CO2 capture capacity compared with carbide slag. The CO2 capture capacity and the carbonation conversion of the synthetic sorbent are 0. 38 g/g and 0. 70 after 50 cycles, which are 1.8 and 2. 1 times those of carbide slag. The average carbonation conversion and the CO2 capture efficiency of the synthetic sorbent are higher than those of carbide slag with the same sorbent flow ratios. The required sorbent flow ratios are lower for synthetic sorbent to achieve the same CO2 capture efficiency compared with carbide slag. With the same sorbent flow ratio and CO2 capture efficiency, the energy requirement in calciner for the synthetic sorbent is less than that for carbide slag.