Monitoring atmospheric carbon dioxide(CO_2) from space-borne state-of-the-art hyperspectral instruments can provide a high precision global dataset to improve carbon flux estimation and reduce the uncertainty of cli...Monitoring atmospheric carbon dioxide(CO_2) from space-borne state-of-the-art hyperspectral instruments can provide a high precision global dataset to improve carbon flux estimation and reduce the uncertainty of climate projection. Here, we introduce a carbon flux inversion system for estimating carbon flux with satellite measurements under the support of "The Strategic Priority Research Program of the Chinese Academy of Sciences—Climate Change: Carbon Budget and Relevant Issues". The carbon flux inversion system is composed of two separate parts: the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing(IAPCAS), and Carbon Tracker-China(CT-China), developed at the Chinese Academy of Sciences. The Greenhouse gases Observing SATellite(GOSAT) measurements are used in the carbon flux inversion experiment. To improve the quality of the IAPCAS-GOSAT retrieval, we have developed a post-screening and bias correction method, resulting in 25%–30% of the data remaining after quality control. Based on these data, the seasonal variation of XCO_2(column-averaged CO_2dry-air mole fraction) is studied, and a strong relation with vegetation cover and population is identified. Then, the IAPCAS-GOSAT XCO_2 product is used in carbon flux estimation by CT-China. The net ecosystem CO_2 exchange is-0.34 Pg C yr^(-1)(±0.08 Pg C yr^(-1)), with a large error reduction of 84%, which is a significant improvement on the error reduction when compared with in situ-only inversion.展开更多
We propose an algorithm that combines a pre-processing step applied to the a priori state vector prior to retrievals, with the modified damped Newton method (MDNM), to improve convergence. The initial constraint vec...We propose an algorithm that combines a pre-processing step applied to the a priori state vector prior to retrievals, with the modified damped Newton method (MDNM), to improve convergence. The initial constraint vector pre-processing step updates the initial state vector prior to the retrievals if the algorithm detects that the initial state vector is far from the true state vector in extreme cases where there are CO2 emissions. The MDNM uses the Levenberg-Marquardt parameter ~,, which ensures a positive Hessian matrix, and a scale factor a, which adjusts the step size to optimize the stability of the convergence. While the algorithm iteratively searches for an optimized solution using observed spectral radiances, MDNM adjusts parameters ), and a to achieve stable convergence. We present simulated retrieval samples to evaluate the performance of our algorithm and comparing it to existing methods. The standard deviation of our retrievals adding random noise was less than 3.8 ppmv. After pre-processing the initial estimate when it was far from the true value, the CO2 retrieval errors in the boundary layers were within 1.2 ppmv. We tested the MDNM algorithm's performance using GOSAT Llb data with cloud screening. Our preliminary validations comparing the results to TCCON FTS measurements showed that the average bias was less than 1.8 ppm and the correlation coefficient was approximately 0.88, which was larger than for the GOSAT L2 product.展开更多
基金funded by the Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues(Grant No.XDA05040200)the National Key Research and Development Program of China(Grant No.2016YFA0600203)+1 种基金the National Natural Science Foundation of China(Grant Nos.41375035 and 31500402)the Chinese Academy of Sciences Strategic Priority Program on Space Science(Grant No.XDA04077300)
文摘Monitoring atmospheric carbon dioxide(CO_2) from space-borne state-of-the-art hyperspectral instruments can provide a high precision global dataset to improve carbon flux estimation and reduce the uncertainty of climate projection. Here, we introduce a carbon flux inversion system for estimating carbon flux with satellite measurements under the support of "The Strategic Priority Research Program of the Chinese Academy of Sciences—Climate Change: Carbon Budget and Relevant Issues". The carbon flux inversion system is composed of two separate parts: the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing(IAPCAS), and Carbon Tracker-China(CT-China), developed at the Chinese Academy of Sciences. The Greenhouse gases Observing SATellite(GOSAT) measurements are used in the carbon flux inversion experiment. To improve the quality of the IAPCAS-GOSAT retrieval, we have developed a post-screening and bias correction method, resulting in 25%–30% of the data remaining after quality control. Based on these data, the seasonal variation of XCO_2(column-averaged CO_2dry-air mole fraction) is studied, and a strong relation with vegetation cover and population is identified. Then, the IAPCAS-GOSAT XCO_2 product is used in carbon flux estimation by CT-China. The net ecosystem CO_2 exchange is-0.34 Pg C yr^(-1)(±0.08 Pg C yr^(-1)), with a large error reduction of 84%, which is a significant improvement on the error reduction when compared with in situ-only inversion.
基金supported by the State Key Program of the National Natural Science Foundation of China (Grant No.41130528)the National Natural Science Foundation of China (Grant No.41401387)the Green Path Program of the Beijing Municipal Science and Technology Commission(Grant No.Z161100001116013)
文摘We propose an algorithm that combines a pre-processing step applied to the a priori state vector prior to retrievals, with the modified damped Newton method (MDNM), to improve convergence. The initial constraint vector pre-processing step updates the initial state vector prior to the retrievals if the algorithm detects that the initial state vector is far from the true state vector in extreme cases where there are CO2 emissions. The MDNM uses the Levenberg-Marquardt parameter ~,, which ensures a positive Hessian matrix, and a scale factor a, which adjusts the step size to optimize the stability of the convergence. While the algorithm iteratively searches for an optimized solution using observed spectral radiances, MDNM adjusts parameters ), and a to achieve stable convergence. We present simulated retrieval samples to evaluate the performance of our algorithm and comparing it to existing methods. The standard deviation of our retrievals adding random noise was less than 3.8 ppmv. After pre-processing the initial estimate when it was far from the true value, the CO2 retrieval errors in the boundary layers were within 1.2 ppmv. We tested the MDNM algorithm's performance using GOSAT Llb data with cloud screening. Our preliminary validations comparing the results to TCCON FTS measurements showed that the average bias was less than 1.8 ppm and the correlation coefficient was approximately 0.88, which was larger than for the GOSAT L2 product.