A supercritical CO2 gas turbine cycle can produce power at high efficiency and the gas turbine is compact compared with the steam turbine. Therefore, it is very advantageous power cycle for the medium temperature rang...A supercritical CO2 gas turbine cycle can produce power at high efficiency and the gas turbine is compact compared with the steam turbine. Therefore, it is very advantageous power cycle for the medium temperature range less than 650 ℃. The purpose of this paper is to show how it can be effectively applied not only to the nuclear power but also to the fossil fired power plant. A design of 300 MWe plant has been carried out, where thermal energy of flue gas leaving a CO2 heater is utilized effectively by means of economizer and a high cycle thermal efficiency of 43.4 % has been achieved. Since the temperature and the pressure difference of the CO2 heater are very high, the structural design becomes very difficult. It is revealed that this problem can be effectively solved by introducing a double expansion turbine cycle. The component designs of the CO2 heater, the economizer, supercritical CO2 turbines, compressors and the recuperators are given and it is shown that these components have good performances and compact sizes.展开更多
Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and frag...Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and fragrance of fragrant rice.However,the core commercial rice production attributes,namely the head rice yield(HRY)and 2-acetyl-1-pyrroline(2-AP)content of fragrant rice,under various nitrogen and silicon(N-Si)fertilization levels and different plantation methods remain unknown.The field experiment in this study was performed in the early seasons of 2018 and 2019 with two popular indica fragrant rice cultivars(Yuxiangyouzhan and Xiangyaxiangzhan).They were grown under six N-Si fertilization treatments(combinations of two levels of Si fertilizer,0 kg Si ha^(−1)(Si0)and 150 kg Si ha^(−1)(Si1),and three levels of N fertilizer,0 kg N ha^(−1)(N0),150 kg N ha^(−1)(N1),and 220 kg N ha^(−1)(N2))and three plantation methods(artificial transplanting(AT),mechanical transplanting(MT),and mechanical direct-seeding(MD)).The results showed that the N-Si fertilization treatments and all the plantation methods significantly affected the HRY and 2-AP content and related parameters of the two different fragrant rice cultivars.Compared with the Si0N0 treatment,the N-Si fertilization treatments resulted in higher HRY and 2-AP contents.The rates of brown rice,milled rice,head rice,and chalky rice of the fragrant rice also improved with the N-Si fertilization treatments.The N-Si fertilization treatments increased the activities of N metabolism enzymes and the accumulation of N and Si in various parts of the fragrant rice,and affected their antioxidant response parameters.The key parameters for the HRY and 2-AP content were assessed by redundancy analysis.Furthermore,the structural equation model revealed that the Si and N accumulation levels indirectly affected the HRY by affecting the N metabolism enzyme activity,N use efficiency,and grain quality of fragrant rice.Moreover,high N and Si accumulation directly promoted the 2-AP content or affected the antioxidant response parameters and indirectly regulated 2-AP synthesis.The interactions of the MT method with the N-Si fertilization treatments varied in the fragrant rice cultivars in terms of the HRY and 2-AP content,whereas the MD method was beneficial to the 2-AP content in both fragrant rice cultivars under the N-Si fertilization treatments.展开更多
Coal-fired power plants are a major carbon source in China. In order to assess the evaluation of China's carbon reduction progress with the promise made on the Paris Agreement, it is crucial to monitor the carbon ...Coal-fired power plants are a major carbon source in China. In order to assess the evaluation of China's carbon reduction progress with the promise made on the Paris Agreement, it is crucial to monitor the carbon flux intensity from coal-fired power plants. Previous studies have calculated CO_(2) emissions from point sources based on Orbiting Carbon Observatory-2 and-3(OCO-2 and OCO-3) satellite measurements, but the factors affecting CO_(2) flux estimations are uncertain. In this study, we employ a Gaussian Plume Model to estimate CO_(2) emissions from three power plants in China based on OCO-3 XCO_(2) measurements. Moreover, flux uncertainties resulting from wind information, background values,satellite CO_(2) measurements, and atmospheric stability are discussed. This study highlights the CO_(2) flux uncertainty derived from the satellite measurements. Finally, satellite-based CO_(2) emission estimates are compared to bottom-up inventories.The satellite-based CO_(2) emission estimates at the Tuoketuo and Nongliushi power plants are ~30 and ~10 kt d^(-1) smaller than the Open-Data Inventory for Anthropogenic Carbon dioxide(ODIAC) respectively, but ~10 kt d^(-1) larger than the ODIAC at Baotou.展开更多
Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf ph...Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf photosynthesis, three numerical sensitivity experiments were carried out. We simulated the sing le leaf net CO2 assimilation, which acts as a function of different light, carbo n dioxide and temperature conditions. The relationships between leaf net photosy nthetic rate of C3 and C4 plant with CO2 concentration intercellular, leaf tempe rature, and photosynthetic active radiation (PAR) were presented, respectively. The results show the numerical experiment may indicate the main characteristic o f plant photosynthesis in C3 and C4 plant, and further can be used to integrate with the regional climate model and act as land surface process scheme, and bett er understand the interaction between vegetation and atmosphere.展开更多
Rapeseed(Brassica napus L.)is one of the main oil crops in the world,and increasing its yield is of great significance for ensuring the safety of edible oil.Presently,improving rapeseed plant architecture is an effect...Rapeseed(Brassica napus L.)is one of the main oil crops in the world,and increasing its yield is of great significance for ensuring the safety of edible oil.Presently,improving rapeseed plant architecture is an effective way to increase rapeseed yield with higher planting density.However,the regulatory mechanism of rapeseed plant architecture is poorly understood.In this study,a dwarf rapeseed mutant dwarf08(df08)is obtained by ethyl methane sulfonate(EMS)-mutagenesis.The decrease in plant height of df08 is mainly caused by the reduction in main inflorescence length and first effective branch height and controlled by a single semi-dominant gene.The hybrid plants(F1)show a semi-dwarf phenotype.Through map-based cloning and transgenic assay,we confirm that the nonsynonymous single nucleotide variant(SNV)(C to T)in BnaC03.BIN2,which is homologous with Arabidopsis(Arabidopsis thaliana)BIN2,is responsible for the dwarfism of df08.BnaC03.BIN2 interacts with BnaBZR1/BES1 and involves in brassinosteroids(BRs)signal transduction.Proline to Leucine substitution in 284(P284L)enhances the protein stability of BnaC03.bin2-D,disrupts BRs signal transduction and affects the expression of genes regulating cell division,leading to dwarfism of df08.This study provides a new insight for the mechanism of rapeseed plant height regulation and creates an elite germplasm that can be used for genetic improvement of rapeseed architecture.展开更多
The genus Pyrrosia belongs to the family Polypodiaceae and are medium-sized epiphytic ferns,where the dried leaves of Pyrrosia lingua,Pyrrosia sheareri,Pyrrosia lanceolata,and Pyrrosia calvata are commonly used in med...The genus Pyrrosia belongs to the family Polypodiaceae and are medium-sized epiphytic ferns,where the dried leaves of Pyrrosia lingua,Pyrrosia sheareri,Pyrrosia lanceolata,and Pyrrosia calvata are commonly used in medicinal practice.In this study,the authenticity of the collected medicinal plant samples of Shiwei was identified with the help of DNA barcoding technology using the internal transcribed spacer 2(ITS2)as the identifying sequence.The experimental samples were analyzed using the basic local alignment search tool(BLAST)and the authenticity of the samples was further verified with the results of similarity comparison.The results proved that the sequences of the experimentally collected samples of Pyrrosia lingua,Pyrrosia sheareri,Pyrrosia lanceolata,and Pyrrosia calvata had a similarity of more than 97%when compared with the corresponding sequences that were uploaded on the Internet.展开更多
Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf ph...Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf photosynthesis, three numerical sensitivity experiments were carried out. We simulated the sing le leaf net CO2 assimilation, which acts as a function of different light, carbo n dioxide and temperature conditions. The relationships between leaf net photosy nthetic rate of C3 and C4 plant with CO2 concentration intercellular, leaf tempe rature, and photosynthetic active radiation (PAR) were presented, respectively. The results show the numerical experiment may indicate the main characteristic o f plant photosynthesis in C3 and C4 plant, and further can be used to integrate with the regional climate model and act as land surface process scheme, and bett er understand the interaction between vegetation and atmosphere.展开更多
The transfer mechanisms. calculating methods and ecological significance of nitrogen transfer between legumes and non-legumes are briefly reviewed. There are three pathways 0f nitrogen transf6r from legumes to neighbo...The transfer mechanisms. calculating methods and ecological significance of nitrogen transfer between legumes and non-legumes are briefly reviewed. There are three pathways 0f nitrogen transf6r from legumes to neighboring non-legumes: (1) the nitrogen pass in soluble form from the donor legume root into the soil solution, move by diffusion or/and mass flow to the receiver root and be taken up by the latter, (2) nitrogen pass into the soil solution as before, be taken up and transported by mycorrhizal hyphae attached to the receiver roots,(3) if mycorrhizal hyphae form connections (bridges) between the two root systems, the nitrogen could pass into the fungus within the donor root and be transported into the receiver root without ever being in the soil solution. The mechanisms of nitrogen transfer between N2-fixing plants and non-N2-fixing plants are reviewed in terms of indirect and direct pathways. The indirect N-transfer process is related to the release of nitrogen from legumes(donor plants), the possible interaction of this nitrogen with soil, the decomposition and mineralization of legumes and tumover of nitrogen, the nitrogen absorbing and competing abilities of the legume and the non-legume (receiver plant). The direCt nitrogen transfer process is generally considered to be related to the nitrogen gradient and physiological imbalance between legumes and non-legumes, and when the donor legume lies in stressful stage (i.e. removal of shoots or attacked by insects), the nitrogen transfer can be improved significantly. Themethods of deterrnining nitrogen transfer (lndirect 15N-isotope. dilution method and direct 15N determination method) are evaluated, and their advantages and shortcomings are shown in this review.展开更多
This paper analyzes 9 essentials in trial collecting SO2 emission charges based on the relevant legislative policies, summarizes and analyzes the actual practices of collecting and using SO2 emission charges in power ...This paper analyzes 9 essentials in trial collecting SO2 emission charges based on the relevant legislative policies, summarizes and analyzes the actual practices of collecting and using SO2 emission charges in power industry, and combining the status of power system reform, puts forward some recommendations about reasonably collecting and using SO2 emission charges and prompting power plants to take measures of desulfurization.展开更多
A comparative study was carried out on the EM_cytochemical localization of calcium and Ca 2+ _ATPase activity in the suspension_cultured cells between the chilling_sensitive maize ( Zea mays L. cv. Black Mexica...A comparative study was carried out on the EM_cytochemical localization of calcium and Ca 2+ _ATPase activity in the suspension_cultured cells between the chilling_sensitive maize ( Zea mays L. cv. Black Mexican Sweet) and chilling_insensitive Trititrigia ( Triticum sect. Trititrigia mackey) at 4 ℃ chilling. When maize and Tyititrigia cells were cultured at 26 ℃, electron microscopic observations revealed that the electron_dense calcium antimonate deposits, an indication of the calcium localization, were localized mainly in the vacuoles, and few was found in the cytosol and nuclei. The electron_dense cerium phosphate deposits, an indication of Ca 2+ _ATPase activity, were abundantly distributed on the plasma membrane (PM). When the cells from both species were cultured at 4 ℃ for 1 and 3 h, an elevation of Ca 2+ level in the cytosol and nuclei was observed, whereas the cerium phosphate deposits on the PM showed no quantitative difference from those of the 26 ℃_cultured cells, indicating that the enzymatic activities were not altered during these chilling periods. However, there was a distinct difference in the dynamics of the Ca 2+ distribution and the PM Ca 2+ _ATPase activity between maize and Trititrigia when chilled at 4 ℃ for 12, 24 and 72 h. In maize cells, a large number of Ca 2+ deposits still existed in the cytosol and nuclei, and the PM Ca 2+ _ATPase became less and less active, and even inactive at all. In Trititrigia cells, the increased cytosolic and nuclear Ca 2+ ions decreased after 12 h chilling. By chilling up to 24 and 72 h, the intracellular Ca 2+ concentration had been restored to a similar low level as those of the warm temperature_cultured cells, while the activity of the PM Ca 2+ _ATPase maintained high. The transient cytosolic and nuclear Ca 2+ increase and the activities of PM Ca 2+ _ATPase during chilling are discussed in relation to plant cold hardiness.展开更多
Medicinal plants have a long history of use in China to treat diabetic symptoms.Ancient Chinese medical manuscripts and ethnobotanical surveys document plant remedies that continue to be actively used in China for the...Medicinal plants have a long history of use in China to treat diabetic symptoms.Ancient Chinese medical manuscripts and ethnobotanical surveys document plant remedies that continue to be actively used in China for the treatment of diabetic symptoms.Based on a systematic ancient Chinese medical manuscripts review in combination with ethnobotanical survey,16 medicinal plants for the traditional treatment of diabetic symptoms were identified for the evaluation of anti-insulin resistance bioactivity.The biological activity of 16 medicinal plants was tested on dexamethasone(DXMS)-induced insulin resistant HepG2 cells.The result shows that 11 of the 16 medicinal plants enhanced glucose uptake of DXMS-induced insulin resistant HepG2 cells,thereby demonstrating their ability to increase insulin sensitivity,other five medicinal plants including Astragalus membranaceus were found ineffective.The study shows that ancient Chinese medical manuscripts and ethnobotanical surveys on plants for the prevention and treatment of diabetic symptoms provide a promising knowledge base for drug discovery to mitigate the global diabetes epidemic.展开更多
Nowadays, the worsening environmental issue caused by CO2 emission is greatly aggravated by human activity. Many CO2 reduction technologies are under fast development. Among these, monoethanolamine (MEA) based CO2 cap...Nowadays, the worsening environmental issue caused by CO2 emission is greatly aggravated by human activity. Many CO2 reduction technologies are under fast development. Among these, monoethanolamine (MEA) based CO2 capture technology has been paid great attention. However, when connecting the CO2 capture process with a coal-fired power plant, the huge energy and efficiency penalty caused by CO2 capture has become a serious problem for its application. Thus, it is of great significance to reduce the related energy consumption. Based on an existing coal-fired power plant, this paper proposes a new way for the decarburized retrofitting of the coal-fired power plant, which helps to improve the overall efficiency of the power plant with less energy and efficiency penalty. The decarburized retrofitting scheme proposed will provide a new route for the CO2 capture process in China.展开更多
The title compound 1-(3-amino-[1,2,4]triazol-1-yl)-3,3-dimethyl-butan-2-one(3) was synthesized by Hofmann-alkylation reaction of 1-chloro-3,3-dimethyl-butan-2-one(1) and ~1H-[1,2,4]triazol-3-ylamine(2) with eq...The title compound 1-(3-amino-[1,2,4]triazol-1-yl)-3,3-dimethyl-butan-2-one(3) was synthesized by Hofmann-alkylation reaction of 1-chloro-3,3-dimethyl-butan-2-one(1) and ~1H-[1,2,4]triazol-3-ylamine(2) with equal amount of K_2CO_3 as acid acceptor. The structure of compound 3 was characterized by ~1H NMR, 13 C NMR, HRMS and single-crystal X-ray diffraction. The compound crystallizes in the monoclinic system, space group P21/n with a = 5.7227(8), b = 27.924(4), c = 6.2282(7) ?, β = 101.892(11)°, V = 973.9(2) ?~3, Z = 4, T = 180.00(10) K, μ(MoKα) = 0.087 mm^(-1), Dc = 1.243 g/cm^3, 3832 reflections measured(3.648≤θ≤26.022°), 1916 unique reflections(Rint = 0.0359, Rsigma = 0.0572) used in all calculations. The final R = 0.0557(I 〉 2σ(I)) and w R = 0.1276(all data). Bioassay showed that 3 displayed excellent activity as plant growth regulator with inducing lateral root formation and enhancing primary root elongation at 0.27 mmol/L(50 ppm) in soybeen(He Feng-50). Good water solubility was found with 50 mg in 1 m L of water. Therefore, application of 3 in agriculture is more environmentally friendly due to cosolvent-free condition, and results in improved abiotic-stress tolerance by affecting the root growth. And furthermore, it can be used as a precursor to investigate the function of regulating plant root growth.展开更多
The Beijing Tong Ren Tang No. 2 Pharmaceutical Plant, located in the southeastern part of Beijing, is a large key production enterprise of the China Beijing Tong Ren Tang Holdings Corporation. Its products are well kn...The Beijing Tong Ren Tang No. 2 Pharmaceutical Plant, located in the southeastern part of Beijing, is a large key production enterprise of the China Beijing Tong Ren Tang Holdings Corporation. Its products are well known for their scientific recipes, strict processing, excellent quality and effective results. The plant, built in 1970, became a State second-class enterprise in 1989. With "quality first and credibility above everything else," the plant has developed into a key traditional Chinese medicines producer with some 1, 000 employees, an annual output value of RMB 100 million,展开更多
Olive pomace plants process olive paste, a waste product of olive mills which produces crude olive kernel oil and olive kernel wood. Olive kernel wood has very good burning characteristics, high heat content, low cost...Olive pomace plants process olive paste, a waste product of olive mills which produces crude olive kernel oil and olive kernel wood. Olive kernel wood has very good burning characteristics, high heat content, low cost and it is used as a renewable solid fuel replacing liquid fuel and heating oil. Part of the produced olive kernel wood is consumed inside the factory for heat generation and the rest is sold to heat consumers. It has been estimated that a typical olive pomace plant located in Crete, Greece consumes 42.86% of the produced olive kernel wood for its own heat generation, while the remaining 57.14% is sold to various heat consumers. 99.1% of the energy used in these plants is consumed for heating and the rest, 0.9%, for lighting and the operation of various electric devices. Olive pomace plants utilize a renewable solid fuel, which is carbon neutral, for the production of thermal energy. Therefore their CO<sub>2</sub> emissions regarding energy utilization are due to electricity use. Installation of solar-PV panels in the plant could generate annually all the electricity needed for its operation. The current legal framework in Greece through net-metering allows the offsetting of grid electricity consumed in factories with PV electricity. The required capital cost of a solar-PV system installed in a typical olive pomace plant located in Crete, Greece in order to offset the grid electricity consumed annually has been estimated at 185,832€, the payback period of 5.33 years and the net present value at 555,671€. Since the plant could utilize only solid biomass for heat generation and could offset the grid electricity consumption with solar electricity, its total CO<sub>2</sub> emissions due to energy use would be zero contributing positively to climate stabilization.展开更多
Tianjin Beijiang Power Plant, one of the first series of Circular Economy Demonstration Project in the country, successfully put its second unit into operation on November 30, 2009
The aim of the present research is to provide a technique for preparing open-cell Al2O3-ZrO2 ceramic foams with uniform cell size.This technique used plant seeds to array templates and centrifugal slip casting to obta...The aim of the present research is to provide a technique for preparing open-cell Al2O3-ZrO2 ceramic foams with uniform cell size.This technique used plant seeds to array templates and centrifugal slip casting to obtain cell struts with high packing density.Aqueous Al2O3-ZrO2 slurries with up to 50 vol.% solid contents were prepared and the rheological characteristic of the slurries was investigated.Consolidation was performed at an acceleration of 2,860 g for 60 min.The effect of the characteristic of plant seeds on the drying behavior of Al2O3-ZrO2 green compact was analyzed.The effects of the solid contents of slurries on segregation phenomena of Al2O3 and ZrO2 particles and green compact uniformity were investigated.The compressive stress-strain curve and deformation behavior of Al2O3-ZrO2 ceramic foams prepared using plant seed template were analyzed.The results showed segregation phenomenon is negligible for highly stable slurry with 50 vol.% solid loading.The prepared cell struts of Al2O3-ZrO2 foams have high green density (61.9% TD), sintered density (99.1% TD) and homogeneous microstructure.When sintered at 1,550 ℃ for 2 h, the cell size of Al2O3-ZrO2 foam is approximately uniform and the diameter is about 1.1 mm.The porosity and compressive strength of sintered products is 66.2% and 5.86 MPa, respectively.展开更多
The upstream regulatory region of a seed specific gene was isolated from the genomic DNA of Brassica napus by PCR amplification. The cloned fragment contained 1755 nucleotides, and shared a sequence homology of 99.6%...The upstream regulatory region of a seed specific gene was isolated from the genomic DNA of Brassica napus by PCR amplification. The cloned fragment contained 1755 nucleotides, and shared a sequence homology of 99.6% with the reported data. The coding region of oleic acid desaturase gene was then cloned from Arabidopsis thaliana. The sequencing analysis indicated that the sequence of the PCR product was just the same as reported before. In addition, the plant expression vector harboring the seed specific promoter and trans Fad2 gene was constructed.展开更多
Eleven new imine derivatives 6 containing 1H-1,2,4-triazole and thiazole rings were synthesized by the condensation of 5-((1H- 1,2,4-triazol-1-yl)methyl)-4-tert-butylthiazol-2-amine with various substituted benzaldehy...Eleven new imine derivatives 6 containing 1H-1,2,4-triazole and thiazole rings were synthesized by the condensation of 5-((1H- 1,2,4-triazol-1-yl)methyl)-4-tert-butylthiazol-2-amine with various substituted benzaldehydes.The structures of the title compounds were characterized by ~1H NMR,MS and elemental analysis.The plant-growth regulatory activities of these compounds were evaluated.The primary bioassay results indicated that these target compounds exhibited promising plant-growth regulatory activities.展开更多
文摘A supercritical CO2 gas turbine cycle can produce power at high efficiency and the gas turbine is compact compared with the steam turbine. Therefore, it is very advantageous power cycle for the medium temperature range less than 650 ℃. The purpose of this paper is to show how it can be effectively applied not only to the nuclear power but also to the fossil fired power plant. A design of 300 MWe plant has been carried out, where thermal energy of flue gas leaving a CO2 heater is utilized effectively by means of economizer and a high cycle thermal efficiency of 43.4 % has been achieved. Since the temperature and the pressure difference of the CO2 heater are very high, the structural design becomes very difficult. It is revealed that this problem can be effectively solved by introducing a double expansion turbine cycle. The component designs of the CO2 heater, the economizer, supercritical CO2 turbines, compressors and the recuperators are given and it is shown that these components have good performances and compact sizes.
基金This project was financially supported by the National Natural Science Foundation of China(31601244 and 31971843)the Guangdong Provincial Key Field Research and Development Plan Project,China(2019B020221003)the Modern Agricultural Industrial Technology System of Guangdong Province,China(2020KJ105).
文摘Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and fragrance of fragrant rice.However,the core commercial rice production attributes,namely the head rice yield(HRY)and 2-acetyl-1-pyrroline(2-AP)content of fragrant rice,under various nitrogen and silicon(N-Si)fertilization levels and different plantation methods remain unknown.The field experiment in this study was performed in the early seasons of 2018 and 2019 with two popular indica fragrant rice cultivars(Yuxiangyouzhan and Xiangyaxiangzhan).They were grown under six N-Si fertilization treatments(combinations of two levels of Si fertilizer,0 kg Si ha^(−1)(Si0)and 150 kg Si ha^(−1)(Si1),and three levels of N fertilizer,0 kg N ha^(−1)(N0),150 kg N ha^(−1)(N1),and 220 kg N ha^(−1)(N2))and three plantation methods(artificial transplanting(AT),mechanical transplanting(MT),and mechanical direct-seeding(MD)).The results showed that the N-Si fertilization treatments and all the plantation methods significantly affected the HRY and 2-AP content and related parameters of the two different fragrant rice cultivars.Compared with the Si0N0 treatment,the N-Si fertilization treatments resulted in higher HRY and 2-AP contents.The rates of brown rice,milled rice,head rice,and chalky rice of the fragrant rice also improved with the N-Si fertilization treatments.The N-Si fertilization treatments increased the activities of N metabolism enzymes and the accumulation of N and Si in various parts of the fragrant rice,and affected their antioxidant response parameters.The key parameters for the HRY and 2-AP content were assessed by redundancy analysis.Furthermore,the structural equation model revealed that the Si and N accumulation levels indirectly affected the HRY by affecting the N metabolism enzyme activity,N use efficiency,and grain quality of fragrant rice.Moreover,high N and Si accumulation directly promoted the 2-AP content or affected the antioxidant response parameters and indirectly regulated 2-AP synthesis.The interactions of the MT method with the N-Si fertilization treatments varied in the fragrant rice cultivars in terms of the HRY and 2-AP content,whereas the MD method was beneficial to the 2-AP content in both fragrant rice cultivars under the N-Si fertilization treatments.
基金supported by the Shanghai Sailing Program (Grant No. 22YF1442000)the Key Laboratory of Middle Atmosphere and Global Environment Observation(Grant No. LAGEO-2021-07)+1 种基金the National Natural Science Foundation of China (Grant No. 41975035)Jiaxing University (Grant Nos. 00323027AL and CD70522035)。
文摘Coal-fired power plants are a major carbon source in China. In order to assess the evaluation of China's carbon reduction progress with the promise made on the Paris Agreement, it is crucial to monitor the carbon flux intensity from coal-fired power plants. Previous studies have calculated CO_(2) emissions from point sources based on Orbiting Carbon Observatory-2 and-3(OCO-2 and OCO-3) satellite measurements, but the factors affecting CO_(2) flux estimations are uncertain. In this study, we employ a Gaussian Plume Model to estimate CO_(2) emissions from three power plants in China based on OCO-3 XCO_(2) measurements. Moreover, flux uncertainties resulting from wind information, background values,satellite CO_(2) measurements, and atmospheric stability are discussed. This study highlights the CO_(2) flux uncertainty derived from the satellite measurements. Finally, satellite-based CO_(2) emission estimates are compared to bottom-up inventories.The satellite-based CO_(2) emission estimates at the Tuoketuo and Nongliushi power plants are ~30 and ~10 kt d^(-1) smaller than the Open-Data Inventory for Anthropogenic Carbon dioxide(ODIAC) respectively, but ~10 kt d^(-1) larger than the ODIAC at Baotou.
基金Natural Science Foundation of China (Grant No. 39900084)
文摘Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf photosynthesis, three numerical sensitivity experiments were carried out. We simulated the sing le leaf net CO2 assimilation, which acts as a function of different light, carbo n dioxide and temperature conditions. The relationships between leaf net photosy nthetic rate of C3 and C4 plant with CO2 concentration intercellular, leaf tempe rature, and photosynthetic active radiation (PAR) were presented, respectively. The results show the numerical experiment may indicate the main characteristic o f plant photosynthesis in C3 and C4 plant, and further can be used to integrate with the regional climate model and act as land surface process scheme, and bett er understand the interaction between vegetation and atmosphere.
基金supported by the National Key Research and Development Program of China(2022YFD1200401)the National Natural Science Foundation of China(U22A20477,32172095)the Central Public-interest Scientific Institution Basal Research Fund(Y2022QC21).
文摘Rapeseed(Brassica napus L.)is one of the main oil crops in the world,and increasing its yield is of great significance for ensuring the safety of edible oil.Presently,improving rapeseed plant architecture is an effective way to increase rapeseed yield with higher planting density.However,the regulatory mechanism of rapeseed plant architecture is poorly understood.In this study,a dwarf rapeseed mutant dwarf08(df08)is obtained by ethyl methane sulfonate(EMS)-mutagenesis.The decrease in plant height of df08 is mainly caused by the reduction in main inflorescence length and first effective branch height and controlled by a single semi-dominant gene.The hybrid plants(F1)show a semi-dwarf phenotype.Through map-based cloning and transgenic assay,we confirm that the nonsynonymous single nucleotide variant(SNV)(C to T)in BnaC03.BIN2,which is homologous with Arabidopsis(Arabidopsis thaliana)BIN2,is responsible for the dwarfism of df08.BnaC03.BIN2 interacts with BnaBZR1/BES1 and involves in brassinosteroids(BRs)signal transduction.Proline to Leucine substitution in 284(P284L)enhances the protein stability of BnaC03.bin2-D,disrupts BRs signal transduction and affects the expression of genes regulating cell division,leading to dwarfism of df08.This study provides a new insight for the mechanism of rapeseed plant height regulation and creates an elite germplasm that can be used for genetic improvement of rapeseed architecture.
文摘The genus Pyrrosia belongs to the family Polypodiaceae and are medium-sized epiphytic ferns,where the dried leaves of Pyrrosia lingua,Pyrrosia sheareri,Pyrrosia lanceolata,and Pyrrosia calvata are commonly used in medicinal practice.In this study,the authenticity of the collected medicinal plant samples of Shiwei was identified with the help of DNA barcoding technology using the internal transcribed spacer 2(ITS2)as the identifying sequence.The experimental samples were analyzed using the basic local alignment search tool(BLAST)and the authenticity of the samples was further verified with the results of similarity comparison.The results proved that the sequences of the experimentally collected samples of Pyrrosia lingua,Pyrrosia sheareri,Pyrrosia lanceolata,and Pyrrosia calvata had a similarity of more than 97%when compared with the corresponding sequences that were uploaded on the Internet.
基金Natural Science Foundation of China (Grant No. 39900084)
文摘Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf photosynthesis, three numerical sensitivity experiments were carried out. We simulated the sing le leaf net CO2 assimilation, which acts as a function of different light, carbo n dioxide and temperature conditions. The relationships between leaf net photosy nthetic rate of C3 and C4 plant with CO2 concentration intercellular, leaf tempe rature, and photosynthetic active radiation (PAR) were presented, respectively. The results show the numerical experiment may indicate the main characteristic o f plant photosynthesis in C3 and C4 plant, and further can be used to integrate with the regional climate model and act as land surface process scheme, and bett er understand the interaction between vegetation and atmosphere.
文摘The transfer mechanisms. calculating methods and ecological significance of nitrogen transfer between legumes and non-legumes are briefly reviewed. There are three pathways 0f nitrogen transf6r from legumes to neighboring non-legumes: (1) the nitrogen pass in soluble form from the donor legume root into the soil solution, move by diffusion or/and mass flow to the receiver root and be taken up by the latter, (2) nitrogen pass into the soil solution as before, be taken up and transported by mycorrhizal hyphae attached to the receiver roots,(3) if mycorrhizal hyphae form connections (bridges) between the two root systems, the nitrogen could pass into the fungus within the donor root and be transported into the receiver root without ever being in the soil solution. The mechanisms of nitrogen transfer between N2-fixing plants and non-N2-fixing plants are reviewed in terms of indirect and direct pathways. The indirect N-transfer process is related to the release of nitrogen from legumes(donor plants), the possible interaction of this nitrogen with soil, the decomposition and mineralization of legumes and tumover of nitrogen, the nitrogen absorbing and competing abilities of the legume and the non-legume (receiver plant). The direCt nitrogen transfer process is generally considered to be related to the nitrogen gradient and physiological imbalance between legumes and non-legumes, and when the donor legume lies in stressful stage (i.e. removal of shoots or attacked by insects), the nitrogen transfer can be improved significantly. Themethods of deterrnining nitrogen transfer (lndirect 15N-isotope. dilution method and direct 15N determination method) are evaluated, and their advantages and shortcomings are shown in this review.
文摘This paper analyzes 9 essentials in trial collecting SO2 emission charges based on the relevant legislative policies, summarizes and analyzes the actual practices of collecting and using SO2 emission charges in power industry, and combining the status of power system reform, puts forward some recommendations about reasonably collecting and using SO2 emission charges and prompting power plants to take measures of desulfurization.
文摘A comparative study was carried out on the EM_cytochemical localization of calcium and Ca 2+ _ATPase activity in the suspension_cultured cells between the chilling_sensitive maize ( Zea mays L. cv. Black Mexican Sweet) and chilling_insensitive Trititrigia ( Triticum sect. Trititrigia mackey) at 4 ℃ chilling. When maize and Tyititrigia cells were cultured at 26 ℃, electron microscopic observations revealed that the electron_dense calcium antimonate deposits, an indication of the calcium localization, were localized mainly in the vacuoles, and few was found in the cytosol and nuclei. The electron_dense cerium phosphate deposits, an indication of Ca 2+ _ATPase activity, were abundantly distributed on the plasma membrane (PM). When the cells from both species were cultured at 4 ℃ for 1 and 3 h, an elevation of Ca 2+ level in the cytosol and nuclei was observed, whereas the cerium phosphate deposits on the PM showed no quantitative difference from those of the 26 ℃_cultured cells, indicating that the enzymatic activities were not altered during these chilling periods. However, there was a distinct difference in the dynamics of the Ca 2+ distribution and the PM Ca 2+ _ATPase activity between maize and Trititrigia when chilled at 4 ℃ for 12, 24 and 72 h. In maize cells, a large number of Ca 2+ deposits still existed in the cytosol and nuclei, and the PM Ca 2+ _ATPase became less and less active, and even inactive at all. In Trititrigia cells, the increased cytosolic and nuclear Ca 2+ ions decreased after 12 h chilling. By chilling up to 24 and 72 h, the intracellular Ca 2+ concentration had been restored to a similar low level as those of the warm temperature_cultured cells, while the activity of the PM Ca 2+ _ATPase maintained high. The transient cytosolic and nuclear Ca 2+ increase and the activities of PM Ca 2+ _ATPase during chilling are discussed in relation to plant cold hardiness.
基金China National Major Projects(2009ZX09103-436)and 973 Program(2011CB915503)of Science and Technology of P.R.Chinathe reservation-talent project of Yunnan Province(2009CI073)+1 种基金the foundation of study abroad returnees from Ministry of Personnel for financial support(Ms.Li-Xin Yang)the foundations from CAS(Dr.Gang Xu).
文摘Medicinal plants have a long history of use in China to treat diabetic symptoms.Ancient Chinese medical manuscripts and ethnobotanical surveys document plant remedies that continue to be actively used in China for the treatment of diabetic symptoms.Based on a systematic ancient Chinese medical manuscripts review in combination with ethnobotanical survey,16 medicinal plants for the traditional treatment of diabetic symptoms were identified for the evaluation of anti-insulin resistance bioactivity.The biological activity of 16 medicinal plants was tested on dexamethasone(DXMS)-induced insulin resistant HepG2 cells.The result shows that 11 of the 16 medicinal plants enhanced glucose uptake of DXMS-induced insulin resistant HepG2 cells,thereby demonstrating their ability to increase insulin sensitivity,other five medicinal plants including Astragalus membranaceus were found ineffective.The study shows that ancient Chinese medical manuscripts and ethnobotanical surveys on plants for the prevention and treatment of diabetic symptoms provide a promising knowledge base for drug discovery to mitigate the global diabetes epidemic.
文摘Nowadays, the worsening environmental issue caused by CO2 emission is greatly aggravated by human activity. Many CO2 reduction technologies are under fast development. Among these, monoethanolamine (MEA) based CO2 capture technology has been paid great attention. However, when connecting the CO2 capture process with a coal-fired power plant, the huge energy and efficiency penalty caused by CO2 capture has become a serious problem for its application. Thus, it is of great significance to reduce the related energy consumption. Based on an existing coal-fired power plant, this paper proposes a new way for the decarburized retrofitting of the coal-fired power plant, which helps to improve the overall efficiency of the power plant with less energy and efficiency penalty. The decarburized retrofitting scheme proposed will provide a new route for the CO2 capture process in China.
基金supported by the National Natural Science Foundation of China(No.2012BAD20B04)
文摘The title compound 1-(3-amino-[1,2,4]triazol-1-yl)-3,3-dimethyl-butan-2-one(3) was synthesized by Hofmann-alkylation reaction of 1-chloro-3,3-dimethyl-butan-2-one(1) and ~1H-[1,2,4]triazol-3-ylamine(2) with equal amount of K_2CO_3 as acid acceptor. The structure of compound 3 was characterized by ~1H NMR, 13 C NMR, HRMS and single-crystal X-ray diffraction. The compound crystallizes in the monoclinic system, space group P21/n with a = 5.7227(8), b = 27.924(4), c = 6.2282(7) ?, β = 101.892(11)°, V = 973.9(2) ?~3, Z = 4, T = 180.00(10) K, μ(MoKα) = 0.087 mm^(-1), Dc = 1.243 g/cm^3, 3832 reflections measured(3.648≤θ≤26.022°), 1916 unique reflections(Rint = 0.0359, Rsigma = 0.0572) used in all calculations. The final R = 0.0557(I 〉 2σ(I)) and w R = 0.1276(all data). Bioassay showed that 3 displayed excellent activity as plant growth regulator with inducing lateral root formation and enhancing primary root elongation at 0.27 mmol/L(50 ppm) in soybeen(He Feng-50). Good water solubility was found with 50 mg in 1 m L of water. Therefore, application of 3 in agriculture is more environmentally friendly due to cosolvent-free condition, and results in improved abiotic-stress tolerance by affecting the root growth. And furthermore, it can be used as a precursor to investigate the function of regulating plant root growth.
文摘The Beijing Tong Ren Tang No. 2 Pharmaceutical Plant, located in the southeastern part of Beijing, is a large key production enterprise of the China Beijing Tong Ren Tang Holdings Corporation. Its products are well known for their scientific recipes, strict processing, excellent quality and effective results. The plant, built in 1970, became a State second-class enterprise in 1989. With "quality first and credibility above everything else," the plant has developed into a key traditional Chinese medicines producer with some 1, 000 employees, an annual output value of RMB 100 million,
文摘Olive pomace plants process olive paste, a waste product of olive mills which produces crude olive kernel oil and olive kernel wood. Olive kernel wood has very good burning characteristics, high heat content, low cost and it is used as a renewable solid fuel replacing liquid fuel and heating oil. Part of the produced olive kernel wood is consumed inside the factory for heat generation and the rest is sold to heat consumers. It has been estimated that a typical olive pomace plant located in Crete, Greece consumes 42.86% of the produced olive kernel wood for its own heat generation, while the remaining 57.14% is sold to various heat consumers. 99.1% of the energy used in these plants is consumed for heating and the rest, 0.9%, for lighting and the operation of various electric devices. Olive pomace plants utilize a renewable solid fuel, which is carbon neutral, for the production of thermal energy. Therefore their CO<sub>2</sub> emissions regarding energy utilization are due to electricity use. Installation of solar-PV panels in the plant could generate annually all the electricity needed for its operation. The current legal framework in Greece through net-metering allows the offsetting of grid electricity consumed in factories with PV electricity. The required capital cost of a solar-PV system installed in a typical olive pomace plant located in Crete, Greece in order to offset the grid electricity consumed annually has been estimated at 185,832€, the payback period of 5.33 years and the net present value at 555,671€. Since the plant could utilize only solid biomass for heat generation and could offset the grid electricity consumption with solar electricity, its total CO<sub>2</sub> emissions due to energy use would be zero contributing positively to climate stabilization.
文摘Tianjin Beijiang Power Plant, one of the first series of Circular Economy Demonstration Project in the country, successfully put its second unit into operation on November 30, 2009
基金supported by the National Natural Science Foundation of China (50672014)Innovation Research Team Program of the Ministry of Education (IRT0713)
文摘The aim of the present research is to provide a technique for preparing open-cell Al2O3-ZrO2 ceramic foams with uniform cell size.This technique used plant seeds to array templates and centrifugal slip casting to obtain cell struts with high packing density.Aqueous Al2O3-ZrO2 slurries with up to 50 vol.% solid contents were prepared and the rheological characteristic of the slurries was investigated.Consolidation was performed at an acceleration of 2,860 g for 60 min.The effect of the characteristic of plant seeds on the drying behavior of Al2O3-ZrO2 green compact was analyzed.The effects of the solid contents of slurries on segregation phenomena of Al2O3 and ZrO2 particles and green compact uniformity were investigated.The compressive stress-strain curve and deformation behavior of Al2O3-ZrO2 ceramic foams prepared using plant seed template were analyzed.The results showed segregation phenomenon is negligible for highly stable slurry with 50 vol.% solid loading.The prepared cell struts of Al2O3-ZrO2 foams have high green density (61.9% TD), sintered density (99.1% TD) and homogeneous microstructure.When sintered at 1,550 ℃ for 2 h, the cell size of Al2O3-ZrO2 foam is approximately uniform and the diameter is about 1.1 mm.The porosity and compressive strength of sintered products is 66.2% and 5.86 MPa, respectively.
文摘The upstream regulatory region of a seed specific gene was isolated from the genomic DNA of Brassica napus by PCR amplification. The cloned fragment contained 1755 nucleotides, and shared a sequence homology of 99.6% with the reported data. The coding region of oleic acid desaturase gene was then cloned from Arabidopsis thaliana. The sequencing analysis indicated that the sequence of the PCR product was just the same as reported before. In addition, the plant expression vector harboring the seed specific promoter and trans Fad2 gene was constructed.
基金the National Natural Science Foundation of China(No.20772068)the National Key Project of Scientific and Technical Supporting Programs of China(No.2006BAE01A01-5) for financial support
文摘Eleven new imine derivatives 6 containing 1H-1,2,4-triazole and thiazole rings were synthesized by the condensation of 5-((1H- 1,2,4-triazol-1-yl)methyl)-4-tert-butylthiazol-2-amine with various substituted benzaldehydes.The structures of the title compounds were characterized by ~1H NMR,MS and elemental analysis.The plant-growth regulatory activities of these compounds were evaluated.The primary bioassay results indicated that these target compounds exhibited promising plant-growth regulatory activities.