Gas concentrations and isotopic compositions of He and CO2 were determined on free gas samples from ten hot springs of the Rehai geothermal field, Tengchong, China. The results showed that hot-spring CO2 gas, together...Gas concentrations and isotopic compositions of He and CO2 were determined on free gas samples from ten hot springs of the Rehai geothermal field, Tengchong, China. The results showed that hot-spring CO2 gas, together with He, was derived mainly from the mantle, indicating the accumulation of mantle-derived volatiles beneath the survey area. The δ 13C values of CO2, higher than those of the typical mantle-derived carbon and the isotopic composition of hot-spring-free CO2 in unequilibrium with dissolved CO2, are recognized only in the Rehai geothermal field, suggesting that there seems to be a still-degassing magmatic intrusion at depths, which provides mantle-derived volatiles to the hydrothermal system above. The accumulation of those volatiles has probably played an important role in triggering earthquakes in this region. In addition, the isotopic characteristics of He and C also indicate that the magmatic intrusion seems to have been derived from the MORB source, and could be contaminated by crustal materials during its upwelling through the continental crust.展开更多
CO2-rich cold springs occur near the active volcanoes at Wudalianchi (五大连池), Northeast China. The springs are rich in CO2, with HCO3-as the predominant anion and have elevated contents of total dissolved solid ...CO2-rich cold springs occur near the active volcanoes at Wudalianchi (五大连池), Northeast China. The springs are rich in CO2, with HCO3-as the predominant anion and have elevated contents of total dissolved solid (TDS) (〉1 000 mg/L), Fe^2+ (〉20 mg/L), Sr (〉1 mg/L), and dissolved Si (〉20 mg/L). The compositions of escaped and dissolved gases of the springs are similar. The δ^13C values of escaped gases and dissolved gases in mineral springs at Wudalianchi vary from -8.77‰ to -4.53‰ and -8.24‰ to -5.26‰, while δ^18O values vary from -10.68‰ to -7.65‰ and -10.30‰ to -8.84‰, respectively, indicating the same upper mantle origin of CO2 of escaped gases and dissolved gases in the springs. Carbon and oxygen isotope fractionations and water-CO2 exchange were weak in the process of groundwater flow. The 4He content exceeds 5 000×10-6 cm^3·STP/mL in escaped gases of the mineral springs, and the 3He/4He ratios of the escaped and dissolved gases vary from 2.64Ra to 3.87Ra and 1.18Ra to 3.30Ra, respectively. It can be postulated that the CO2 of mineral springs deriving from the magma chamber of the upper mantle moves upward to the surface, to increase the content of 4He in the mineral springs and decrease the ratio of 3He/4He. The helium origin of escaped gases in springs can be calculated with the MORB-crust mixing model, but that in the north spring can be better explained with the MORB-crust-air mixing model due to the effect of mixing with surface water. However, dissolved helium in springs, except the north spring, is better explained with the MORB-crust-ASW mixing model.展开更多
In this paper a comprehensive tracing study is conducted on mantle degassing and deep-seated geological structures in different types of fault zones in the continent of China based on the helium isotope data, coupled ...In this paper a comprehensive tracing study is conducted on mantle degassing and deep-seated geological structures in different types of fault zones in the continent of China based on the helium isotope data, coupled with some indices such as CO2/3He, CH4/3He and 40Ar/36Ar, and geological tectonics data. There are four representative types of fault zones: (1) Lithospheric fault zones in the extensional tectonic environment are characterized by a small Earth’s crust thickness, a lower CH4/3He-high R and lower CO2/3He-high R system, the strongest mantle de- gassing, and the dominance of mantle fluid, as is represented by the Tancheng-Lujiang fault zone. (2) The lithospheric fault zones or the subduction zone in the strongly compresso-tectonic envi- ronment, for instance, the Bangonghu-Nujiang fault zone, are characterized by a huge thick Earth’s crust, with the R/Ra values within the range of 0.43―1.13, and weak mantle degassing with mantle-source helium accounting for 5%―14% of the total. (3) The deep-seated fault zones at the basinal margins of an orogenic belt are characterized by R values being on order of mag- nitude of 10?7, and the CH4/3He values, 109―1010, CO2/3He values, 106―108; as well as much weak mantle degassing. (4) The crustal fault zones in the orogenic belt, such as the Yaojie fault zone (F19), possess a high CH4/3He-low R (10?8) and high CO2/3He-low R system, with no obvi- ous sign of mantle degassing. Studies have shown that the deep-seated huge fault zones are the major channel ways for mantle degassing, the main factors controlling the intensity of mantle degassing are fault depth, tectonic environment and crust thickness; the intensity of mantle de- gassing can reflect the depth and the status of deep-seated tectonic environment of fault, while the geochemical tracing studies of gases can open up a new research approach; upwelling ac- tivity of hydrothermal fluids from the deep interior of the Earth may be one of the driving forces for the formation and evolution of the huge deep fault zones. Piedmont fault zones are the locations where deep-seated tectonic activity and crust/mantle structure are transformed, which are of great significance in understanding the mechanisms of formation of orogenic belts and basins.展开更多
Along both sides of the Tancheng-Lujiang Fracture Zone in eastern China, a series of mantle source gas pools constitute a massive-scale tectonic accumulation zone in NNE direction, with the mantle geochemical characte...Along both sides of the Tancheng-Lujiang Fracture Zone in eastern China, a series of mantle source gas pools constitute a massive-scale tectonic accumulation zone in NNE direction, with the mantle geochemical characteristics of high concentrations of CO2 and He, high 3He/4He-40Ar/36Ar ratio system and high δ13Coo2 ratios (the mainfrequency, -3.4‰-4.6‰), showing no difference from the tectonic framework of the area. In the area, thetectonic environment is a rift formed as a result of diapiric mantle injection and crust thinning to form graben-type basins and lithospheric fractures. The mantle-derived volcanic rocks and inclusions are well-developed and a high geothermal zone (mantlesource) exists in the area. The characteristics of the three components (solid, liquid and gas) of mantle, concentrated all over the same tectonic space zone, show that the rift system is of a good tectonic environment or passage for mantle degassing and gas migration. The main types of the gas pools are volcano, fault-block, anticline, buried hill and so on, but most of them are combination traps closely related with fracture. For the mantle source gas pools, rift is an optimum tectonic region, and nearby lithospheric fracture, mantle source volcanic rocks or basement uplifts are a favourable structural location when reservoir-caprock association develops.展开更多
基金jointly by the National Natural Science Foundation of China(Grant Nos.40173006 and 49133009)the Key Project of the Ministry of Education(No.03106)
文摘Gas concentrations and isotopic compositions of He and CO2 were determined on free gas samples from ten hot springs of the Rehai geothermal field, Tengchong, China. The results showed that hot-spring CO2 gas, together with He, was derived mainly from the mantle, indicating the accumulation of mantle-derived volatiles beneath the survey area. The δ 13C values of CO2, higher than those of the typical mantle-derived carbon and the isotopic composition of hot-spring-free CO2 in unequilibrium with dissolved CO2, are recognized only in the Rehai geothermal field, suggesting that there seems to be a still-degassing magmatic intrusion at depths, which provides mantle-derived volatiles to the hydrothermal system above. The accumulation of those volatiles has probably played an important role in triggering earthquakes in this region. In addition, the isotopic characteristics of He and C also indicate that the magmatic intrusion seems to have been derived from the MORB source, and could be contaminated by crustal materials during its upwelling through the continental crust.
基金supported by the National Natural Science Foundation of China(Nos.40425001,40602031,40830748),and Russian Fund for Basic Research
文摘CO2-rich cold springs occur near the active volcanoes at Wudalianchi (五大连池), Northeast China. The springs are rich in CO2, with HCO3-as the predominant anion and have elevated contents of total dissolved solid (TDS) (〉1 000 mg/L), Fe^2+ (〉20 mg/L), Sr (〉1 mg/L), and dissolved Si (〉20 mg/L). The compositions of escaped and dissolved gases of the springs are similar. The δ^13C values of escaped gases and dissolved gases in mineral springs at Wudalianchi vary from -8.77‰ to -4.53‰ and -8.24‰ to -5.26‰, while δ^18O values vary from -10.68‰ to -7.65‰ and -10.30‰ to -8.84‰, respectively, indicating the same upper mantle origin of CO2 of escaped gases and dissolved gases in the springs. Carbon and oxygen isotope fractionations and water-CO2 exchange were weak in the process of groundwater flow. The 4He content exceeds 5 000×10-6 cm^3·STP/mL in escaped gases of the mineral springs, and the 3He/4He ratios of the escaped and dissolved gases vary from 2.64Ra to 3.87Ra and 1.18Ra to 3.30Ra, respectively. It can be postulated that the CO2 of mineral springs deriving from the magma chamber of the upper mantle moves upward to the surface, to increase the content of 4He in the mineral springs and decrease the ratio of 3He/4He. The helium origin of escaped gases in springs can be calculated with the MORB-crust mixing model, but that in the north spring can be better explained with the MORB-crust-air mixing model due to the effect of mixing with surface water. However, dissolved helium in springs, except the north spring, is better explained with the MORB-crust-ASW mixing model.
基金the State "973" Program(Grant No.G2002CB211701) the National Natural Science Foundation of China(Grant No.40372065).
文摘In this paper a comprehensive tracing study is conducted on mantle degassing and deep-seated geological structures in different types of fault zones in the continent of China based on the helium isotope data, coupled with some indices such as CO2/3He, CH4/3He and 40Ar/36Ar, and geological tectonics data. There are four representative types of fault zones: (1) Lithospheric fault zones in the extensional tectonic environment are characterized by a small Earth’s crust thickness, a lower CH4/3He-high R and lower CO2/3He-high R system, the strongest mantle de- gassing, and the dominance of mantle fluid, as is represented by the Tancheng-Lujiang fault zone. (2) The lithospheric fault zones or the subduction zone in the strongly compresso-tectonic envi- ronment, for instance, the Bangonghu-Nujiang fault zone, are characterized by a huge thick Earth’s crust, with the R/Ra values within the range of 0.43―1.13, and weak mantle degassing with mantle-source helium accounting for 5%―14% of the total. (3) The deep-seated fault zones at the basinal margins of an orogenic belt are characterized by R values being on order of mag- nitude of 10?7, and the CH4/3He values, 109―1010, CO2/3He values, 106―108; as well as much weak mantle degassing. (4) The crustal fault zones in the orogenic belt, such as the Yaojie fault zone (F19), possess a high CH4/3He-low R (10?8) and high CO2/3He-low R system, with no obvi- ous sign of mantle degassing. Studies have shown that the deep-seated huge fault zones are the major channel ways for mantle degassing, the main factors controlling the intensity of mantle degassing are fault depth, tectonic environment and crust thickness; the intensity of mantle de- gassing can reflect the depth and the status of deep-seated tectonic environment of fault, while the geochemical tracing studies of gases can open up a new research approach; upwelling ac- tivity of hydrothermal fluids from the deep interior of the Earth may be one of the driving forces for the formation and evolution of the huge deep fault zones. Piedmont fault zones are the locations where deep-seated tectonic activity and crust/mantle structure are transformed, which are of great significance in understanding the mechanisms of formation of orogenic belts and basins.
文摘Along both sides of the Tancheng-Lujiang Fracture Zone in eastern China, a series of mantle source gas pools constitute a massive-scale tectonic accumulation zone in NNE direction, with the mantle geochemical characteristics of high concentrations of CO2 and He, high 3He/4He-40Ar/36Ar ratio system and high δ13Coo2 ratios (the mainfrequency, -3.4‰-4.6‰), showing no difference from the tectonic framework of the area. In the area, thetectonic environment is a rift formed as a result of diapiric mantle injection and crust thinning to form graben-type basins and lithospheric fractures. The mantle-derived volcanic rocks and inclusions are well-developed and a high geothermal zone (mantlesource) exists in the area. The characteristics of the three components (solid, liquid and gas) of mantle, concentrated all over the same tectonic space zone, show that the rift system is of a good tectonic environment or passage for mantle degassing and gas migration. The main types of the gas pools are volcano, fault-block, anticline, buried hill and so on, but most of them are combination traps closely related with fracture. For the mantle source gas pools, rift is an optimum tectonic region, and nearby lithospheric fracture, mantle source volcanic rocks or basement uplifts are a favourable structural location when reservoir-caprock association develops.