Catalytic hydrogenation of CO2 into methanol and dimethyl ether was carried out over hybrid catalysts consisting of methanol-synthesis catalyst and zeolite. The methanol-synthesis catalyst, Cu/ZnO/Al2O3, was prepared ...Catalytic hydrogenation of CO2 into methanol and dimethyl ether was carried out over hybrid catalysts consisting of methanol-synthesis catalyst and zeolite. The methanol-synthesis catalyst, Cu/ZnO/Al2O3, was prepared by a co-precipitation method. Then it was physically mixed with HZSM-5 zeolite at weight ratios of 2:1, 1:1 and 1:2. The CO2 hydrogenation reaction was conducted in a fixed-bed microreactor at 250℃ and 40 bar in pre-mixed H2/CO2 feed with H2:CO2 molar ratios of 3:1 and 7:1. Products detected include methanol, dimethyl ether, carbon monoxide and water. Conversion of CO2 and yield of oxygenated products were influenced by the weight ratio of Cu/ZnO/Al2O3:HZSM-5 in the hybrid system and also the feed ratio. The Cu/ZnO/Al2O3: HZSM-5 hybrid at 1:1 resulted in methanol yield of 22.0% and was found to be an efficient hybrid catalyst for the CO2 hydrogenation reaction.展开更多
文摘Catalytic hydrogenation of CO2 into methanol and dimethyl ether was carried out over hybrid catalysts consisting of methanol-synthesis catalyst and zeolite. The methanol-synthesis catalyst, Cu/ZnO/Al2O3, was prepared by a co-precipitation method. Then it was physically mixed with HZSM-5 zeolite at weight ratios of 2:1, 1:1 and 1:2. The CO2 hydrogenation reaction was conducted in a fixed-bed microreactor at 250℃ and 40 bar in pre-mixed H2/CO2 feed with H2:CO2 molar ratios of 3:1 and 7:1. Products detected include methanol, dimethyl ether, carbon monoxide and water. Conversion of CO2 and yield of oxygenated products were influenced by the weight ratio of Cu/ZnO/Al2O3:HZSM-5 in the hybrid system and also the feed ratio. The Cu/ZnO/Al2O3: HZSM-5 hybrid at 1:1 resulted in methanol yield of 22.0% and was found to be an efficient hybrid catalyst for the CO2 hydrogenation reaction.