Experiments were made for the adsorption of CO2 and N2 on typical adsorbents to investigate the effects of porous structure and surface affinity of adsorbents as well as those of adsorption temperature and pressure th...Experiments were made for the adsorption of CO2 and N2 on typical adsorbents to investigate the effects of porous structure and surface affinity of adsorbents as well as those of adsorption temperature and pressure that might cause the variation of adsorption mechanism. It is shown that polar surface tends to enlarge the adsorption difference between CO2 and N2, and the difference is more sensitive to temperature than the adsorbents with non-polar surface. The adsorbents with non-polar surface are not much sensitive to the effect of water vapor, though the water vapor interferes the separation remarkably. The separation coefficient linearly increases with the micro- pore volume per unit surface area of activated carbons, but no rule is shown on mesoporous silicon materials. The function of adsorption mechanism on the separation is not as much as expected.展开更多
文摘Experiments were made for the adsorption of CO2 and N2 on typical adsorbents to investigate the effects of porous structure and surface affinity of adsorbents as well as those of adsorption temperature and pressure that might cause the variation of adsorption mechanism. It is shown that polar surface tends to enlarge the adsorption difference between CO2 and N2, and the difference is more sensitive to temperature than the adsorbents with non-polar surface. The adsorbents with non-polar surface are not much sensitive to the effect of water vapor, though the water vapor interferes the separation remarkably. The separation coefficient linearly increases with the micro- pore volume per unit surface area of activated carbons, but no rule is shown on mesoporous silicon materials. The function of adsorption mechanism on the separation is not as much as expected.