A Bi2Sr2Co2Oy/Si heterojunction is obtained by growing a layer of p-type oxygen-deficient Bi2Sr2Co2Oy film on a commercial n-type silicon wafer by pulsed laser deposition. Its rectifying and photovoltaic properties ar...A Bi2Sr2Co2Oy/Si heterojunction is obtained by growing a layer of p-type oxygen-deficient Bi2Sr2Co2Oy film on a commercial n-type silicon wafer by pulsed laser deposition. Its rectifying and photovoltaic properties are studied in a wide temperature range from 20 K to 300 K. The transport mechanism under the forward bias can be attributed to a trap- filled space-charge-limited current conduction mechanism. Under the irradiation of a 532-nm continuous wave laser, a clear photovoltaic effect is observed and the magnitude ofphotovoltage increases as the temperature decreases, The results demonstrate the potential application of a Bi2SrzCo2Oy-based heterojunction in the photoelectronic devices.展开更多
Based on chromatographic theory, the moment method and the time-domain fitting analysis were applied to measure and evaluate the adsorption equilibrium constant and mass transfer properties (axial dispersion coefficie...Based on chromatographic theory, the moment method and the time-domain fitting analysis were applied to measure and evaluate the adsorption equilibrium constant and mass transfer properties (axial dispersion coefficient and effective intra-particle diffusivity) for toluene and p-dichlorobenzene on silica gel adsorbent in the subcritical and supercritical CO2. An apparatus based on supercritical fluid chromatography was established and the experiments were performed at temperatures of 298.15-318.15 K and pressures of 7.5-17.8 MPa. The two methods have been compared. The results show that for the systems studied here the moment method can give reasonable values for both adsorption equilibrium constant and mass transfer properties, but the time-domain analysis only can obtain the adsorption equilibrium constant. The dependence of adsorption equilibrium constant and mass transfer properties on temperature and pressure was investigated.展开更多
A solar-light double illumination photoelectrocatalytic cell(SLDIPEC) was fabricated for autonomous CO2 reduction and O2 evolution with the aid of photosystem II(PS-II, an efficient light-driven water-oxidized enzy...A solar-light double illumination photoelectrocatalytic cell(SLDIPEC) was fabricated for autonomous CO2 reduction and O2 evolution with the aid of photosystem II(PS-II, an efficient light-driven water-oxidized enzyme from nature) and utilized in a photoanode solution. The proposed SLPEC system was composed of Cu foam as the photoanode and p-Si nanowires(Si-NW) as the photocathode. Under solar irradiation, it exhibited a super-photoelectrocatalytic performance for CO2 conversion to methanol, with a high evolution rate(41.94 mmol/hr), owing to fast electron transfer from PS-II to Cu foam.Electrons were subsequently trapped by Si-NW through an external circuit via bias voltage(0.5 V), and a suitable conduction band potential of Si(-0.6 e V) allowed CO2 to be easily reduced to CH3 OH at the photocathode. The constructed Z-scheme between Cu foam and Si-NW can allow the SLDIPEC system to reduce CO2(8.03 mmol/hr) in the absence of bias voltage. This approach makes full use of the energy band mismatch of the photoanode and photocathode to design a highly efficient device for solving environmental issues and producing clean energy.展开更多
Tropical waters show different regional aspects due to specificities in their nutrient biogeochemical cycles, which can affect the carbon system and influence their regional role as sinks or sources of CO<sub>2&...Tropical waters show different regional aspects due to specificities in their nutrient biogeochemical cycles, which can affect the carbon system and influence their regional role as sinks or sources of CO<sub>2</sub>. This study was performed on particular tropical areas that present a different seasonal behaviour related to the carbon cycle observed in the late rainy season (July 2013). Understanding the CO<sub>2</sub> drawdown and outgassing potential in these areas is needed to call attention to more long-term monitoring efforts and protect understudied tropical coastal systems more efficiently. This study is focused on nutrient values, hydrological data, biogeochemical carbon behaviour linked to the carbonate system and includes estimates of CO<sub>2</sub> fluxes in three contrasting areas off the northeastern Brazilian shelf: 1) an urbanised estuary (Recife-REC), 2) a coastal Island (Itamaracá-ITA) and 3) an oceanic archipelago (Fernando de Noronha-FN). In general, REC acted as a source, while ITA and FN as carbon sinks. In ITA, despite the high DIC and Total Alkalinity observed (mean ~2360 μmol·kg<sup>-1</sup>), the sink is associated with an effective cascading of atmospheric CO<sub>2</sub> associated with turbulent shallow waters coupled with biogenic removal of and precipitation of CaCO<sub>3</sub> by coralline algae. FN acted as a sink, linked to minor decreases in Total Alkalinity (mean~2295 μmol·kg<sup>-1</sup>) influenced by ammonium-based primary production, nitrogen fixation and sporadic entrainment of nutrient rich waters in the upper thermocline. More studies in different western tropical Atlantic coastal systems can improve the knowledge of tropical shelf seas and their contribution to the ocean carbon budget under specific regional trophic regimes.展开更多
基金Project supported by the National Basic Research Program of China (Grant No.2011CB612305)the National Natural Science Foundation of China (Grant No.51372064)+1 种基金the One Hundred Persons Project of Hebei Province of China (Grant No.CPRC001)the Science and Technology Research Project of Colleges and Universities in Hebei Province,China (Grant No.QN20131040)
文摘A Bi2Sr2Co2Oy/Si heterojunction is obtained by growing a layer of p-type oxygen-deficient Bi2Sr2Co2Oy film on a commercial n-type silicon wafer by pulsed laser deposition. Its rectifying and photovoltaic properties are studied in a wide temperature range from 20 K to 300 K. The transport mechanism under the forward bias can be attributed to a trap- filled space-charge-limited current conduction mechanism. Under the irradiation of a 532-nm continuous wave laser, a clear photovoltaic effect is observed and the magnitude ofphotovoltage increases as the temperature decreases, The results demonstrate the potential application of a Bi2SrzCo2Oy-based heterojunction in the photoelectronic devices.
基金Supported by research grant 02KJB530002 from Jiangsu Provincial Committee of Education.
文摘Based on chromatographic theory, the moment method and the time-domain fitting analysis were applied to measure and evaluate the adsorption equilibrium constant and mass transfer properties (axial dispersion coefficient and effective intra-particle diffusivity) for toluene and p-dichlorobenzene on silica gel adsorbent in the subcritical and supercritical CO2. An apparatus based on supercritical fluid chromatography was established and the experiments were performed at temperatures of 298.15-318.15 K and pressures of 7.5-17.8 MPa. The two methods have been compared. The results show that for the systems studied here the moment method can give reasonable values for both adsorption equilibrium constant and mass transfer properties, but the time-domain analysis only can obtain the adsorption equilibrium constant. The dependence of adsorption equilibrium constant and mass transfer properties on temperature and pressure was investigated.
基金supported by the National Natural Science Foundation of China (No. 21477079, 21677099, 21237003)the Shanghai Government (No. 11ZR1426300, 13YZ054, 14ZR1430900)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1269)the International Joint Laboratory on Resource Chemistry (No. IJLRC)
文摘A solar-light double illumination photoelectrocatalytic cell(SLDIPEC) was fabricated for autonomous CO2 reduction and O2 evolution with the aid of photosystem II(PS-II, an efficient light-driven water-oxidized enzyme from nature) and utilized in a photoanode solution. The proposed SLPEC system was composed of Cu foam as the photoanode and p-Si nanowires(Si-NW) as the photocathode. Under solar irradiation, it exhibited a super-photoelectrocatalytic performance for CO2 conversion to methanol, with a high evolution rate(41.94 mmol/hr), owing to fast electron transfer from PS-II to Cu foam.Electrons were subsequently trapped by Si-NW through an external circuit via bias voltage(0.5 V), and a suitable conduction band potential of Si(-0.6 e V) allowed CO2 to be easily reduced to CH3 OH at the photocathode. The constructed Z-scheme between Cu foam and Si-NW can allow the SLDIPEC system to reduce CO2(8.03 mmol/hr) in the absence of bias voltage. This approach makes full use of the energy band mismatch of the photoanode and photocathode to design a highly efficient device for solving environmental issues and producing clean energy.
文摘Tropical waters show different regional aspects due to specificities in their nutrient biogeochemical cycles, which can affect the carbon system and influence their regional role as sinks or sources of CO<sub>2</sub>. This study was performed on particular tropical areas that present a different seasonal behaviour related to the carbon cycle observed in the late rainy season (July 2013). Understanding the CO<sub>2</sub> drawdown and outgassing potential in these areas is needed to call attention to more long-term monitoring efforts and protect understudied tropical coastal systems more efficiently. This study is focused on nutrient values, hydrological data, biogeochemical carbon behaviour linked to the carbonate system and includes estimates of CO<sub>2</sub> fluxes in three contrasting areas off the northeastern Brazilian shelf: 1) an urbanised estuary (Recife-REC), 2) a coastal Island (Itamaracá-ITA) and 3) an oceanic archipelago (Fernando de Noronha-FN). In general, REC acted as a source, while ITA and FN as carbon sinks. In ITA, despite the high DIC and Total Alkalinity observed (mean ~2360 μmol·kg<sup>-1</sup>), the sink is associated with an effective cascading of atmospheric CO<sub>2</sub> associated with turbulent shallow waters coupled with biogenic removal of and precipitation of CaCO<sub>3</sub> by coralline algae. FN acted as a sink, linked to minor decreases in Total Alkalinity (mean~2295 μmol·kg<sup>-1</sup>) influenced by ammonium-based primary production, nitrogen fixation and sporadic entrainment of nutrient rich waters in the upper thermocline. More studies in different western tropical Atlantic coastal systems can improve the knowledge of tropical shelf seas and their contribution to the ocean carbon budget under specific regional trophic regimes.