Four rice ( Oryza sativa L.) cultivars 'IR72', 'Tesanai 2', 'Guichao 2' and 'IIyou 4480' were grown in two plastic house (15 m×3 m) with 35 μmol/mol and 60 μmol/mol CO 2 conc...Four rice ( Oryza sativa L.) cultivars 'IR72', 'Tesanai 2', 'Guichao 2' and 'IIyou 4480' were grown in two plastic house (15 m×3 m) with 35 μmol/mol and 60 μmol/mol CO 2 concentration which was controlled by computer. As compared with rice at ambient 35 μmol/mol CO 2, the changes in photosynthetic rate at elevated CO 2 showed up_regulation ('IR72' and 'Tesanai 2'), stable (unchanged) in 'Guichao 2' and down_regulation type ('IIyou 4480'). Growth rate, panicle weight, integrated water use efficiency (WUE) calculated from Δ 13 C and the capacity of scavenging DPPH · (1,1_diphenyl_2_picrylhydrazyl) free radical were increased at elevated CO 2. An increment in total biomass was observed in three cultivars by elevated CO 2, with the exception of 'IIyou 4480'. Ratios of panicle weight/total biomass were altered to different extents in tested cultivars by elevated CO 2. When leaf segments were subjected to PEG osmotic stress, the electrolyte leakage rate from leaves grown at elevated CO 2 was less than that at 35 μmol/mol CO 2. Those intraspecific variations of rice imply a possibility for selecting cultivars with maximal productivity and high tolerance to stresses adapted to elevated CO 2 in the future.展开更多
文摘Four rice ( Oryza sativa L.) cultivars 'IR72', 'Tesanai 2', 'Guichao 2' and 'IIyou 4480' were grown in two plastic house (15 m×3 m) with 35 μmol/mol and 60 μmol/mol CO 2 concentration which was controlled by computer. As compared with rice at ambient 35 μmol/mol CO 2, the changes in photosynthetic rate at elevated CO 2 showed up_regulation ('IR72' and 'Tesanai 2'), stable (unchanged) in 'Guichao 2' and down_regulation type ('IIyou 4480'). Growth rate, panicle weight, integrated water use efficiency (WUE) calculated from Δ 13 C and the capacity of scavenging DPPH · (1,1_diphenyl_2_picrylhydrazyl) free radical were increased at elevated CO 2. An increment in total biomass was observed in three cultivars by elevated CO 2, with the exception of 'IIyou 4480'. Ratios of panicle weight/total biomass were altered to different extents in tested cultivars by elevated CO 2. When leaf segments were subjected to PEG osmotic stress, the electrolyte leakage rate from leaves grown at elevated CO 2 was less than that at 35 μmol/mol CO 2. Those intraspecific variations of rice imply a possibility for selecting cultivars with maximal productivity and high tolerance to stresses adapted to elevated CO 2 in the future.