China has set the goal for its CO2 emissions to peak around 2030, which is not only a strategic decision coordinating domestic sustainable development and global climate change mitigation but also an overarching targe...China has set the goal for its CO2 emissions to peak around 2030, which is not only a strategic decision coordinating domestic sustainable development and global climate change mitigation but also an overarching target and a key point of action for China's resource conservation, environmental protection, shift in economic development patterns, and CO2 emission reduction to avoid climate change. The development stage where China maps out the CO2 emission peak target is earlier than that of the developed countries. It is a necessity that the non-fossil energy supplies be able to meet all the increased energy demand for achieving CO2 emission peaking. Given that China's potential GDP annual increasing rate will be more than 4%, and China's total energy demand will continue to increase by approximately 1.0%--1.5% annually around 2030, new and renewable energies will need to increase by 6%-8% annually to meet the desired CO2 emission peak. The share of new and renewable energies in China's total primary energy supply will be approximately 20% by 2030. At that time, the energy consumption elasticity will decrease to around 0.3, and the annual decrease in the rate of CO2 intensity will also be higher than 4% to ensure the sustained growth of GDE To achieve the CO2 emission peaking target and substantially promote the low-carbon deve!opment transformation, China needs to actively promote an energy production and consumption revolution, the innovation of advanced energy technologies, the reform of the energy regulatory system and pricing mechanism, and especially the construction of a national carbon emission cap and trade system.展开更多
Different VSA (Vacuum Swing Adsorption) cycles and process schemes have been evaluated to find suitable process configurations for effectively separating C02 from flue gases from different industrial sectors. The cy...Different VSA (Vacuum Swing Adsorption) cycles and process schemes have been evaluated to find suitable process configurations for effectively separating C02 from flue gases from different industrial sectors. The cycles were studied using an adsorption simulator developed in our research group, which has been suc- cessfully used to predict experimental results over severa~ years. Commercial zeolite APGIlI and granular ac- tivated carbon were used as the adsorbents. Three-bed VSA cycles with- and without-product purge and 2- stage VSA systems have been investigated. It was found that for a feed gas containing 15% CO2 (representing flue gas from power plants), high CO2 purities and recoveries could be obtained using a three-bed zeolite APGII1 VSA unit for one stage capture, but with more stringent conditions such as deeper vacuum pressures of 1-3 kPa. 2-stage VSA process operated in series allowed us to use simple process steps and operate at more realistic vacuum pressures. With a vacuum pressure of 10 kPa, final C02 purity of 95.3% with a recov- ery of 98.2% were obtained at specific power consumption of 0.55 MJ. (kg CO2) 1 from feed gas containing 15% C02. These numbers compare very well with those obtained from a single stage process operating at I kPa vacuum pressure. The feed CO2 concentration was very influential in determining the desorption pressure necessary to achieve high separation efficiency. For feed gases containing 〉30% CO2, a singlestage VSA capture process operating at moderate vacuum pressure and without a product purge, can achieve very high product purities and recoveries.展开更多
The objective of this research is to quantify the EEC (embodied energy/CO2) of a building. The EEC represents the energy consumption and CO2 emissions at individual phases of a building's life-cycle, such as constr...The objective of this research is to quantify the EEC (embodied energy/CO2) of a building. The EEC represents the energy consumption and CO2 emissions at individual phases of a building's life-cycle, such as construction (including manufacture of materials and equipment), renewal (including repair work) and demolition. Energy and CO2 emission intensities in terms of 401 sectors were calculated, using the 2005 I-O (input-output) table in Japan. According to our case study conducted from the construction phase to demolition, the EC (embodied CO2) of an office building used for 60 years is 12,044 t-CO2 and 1,093 kg-CO2/m^2 in total. CO2 equivalent emissions (CO2e) by Freon gases, contained in building materials, equipment and devices, were also calculated. As the results, CO2e by insulators was 2% of the building's EC and CO2e by refrigerants was 9%-12% of the building's EC. It is important to keep reducing emissions of Freon gases contained in refrigerators.展开更多
The first task in ensuring a reduction in CO2 emissions is to quantitatively measure the factors and their effect size on increasing CO2 emissions due to fossil fuel consumption. An extension of the buying and import-...The first task in ensuring a reduction in CO2 emissions is to quantitatively measure the factors and their effect size on increasing CO2 emissions due to fossil fuel consumption. An extension of the buying and import-noncompetition economy-energy-CO2 emission input-output model was designed to analyze CO2 emission increases for Beijing from 1997-2007. The increase in CO2 emissions because of energy consumption was broken down into nine kinds of effects including the change in energy consumption intensity and structure, and economic scale expansion. We found that the effect of economic scale expansion such as consumption investment, export and selling were the main factors increasing CO2 emissions. The effect of the change in energy consumption intensity was the dominant factor reducing CO2 emissions. CO2 emissions increased rapidly from 2002. The ifrst increase in carbon emissions was related to the service industry, adjustment in industrial structure and the priority given to tertiary industries. High energy consumption manufacturing was the industrial branch driving CO2 emissions; the main industry driving CO2 emission reductions was the energy industry. The new round of industrialization with ‘high carbon’ features meant that CO2 emissions increased rapidly from 2002-2007. The quantity and direction of the nine focal effects varied across industries and different industrial sectors.展开更多
In this article, we calculate China's Mainland’s CO2 emission of fossil fuel consumption from 1991 to 2010 following the apparent consumption method recommend by IPCC: (i) the scale of CO2 emissions has increa...In this article, we calculate China's Mainland’s CO2 emission of fossil fuel consumption from 1991 to 2010 following the apparent consumption method recommend by IPCC: (i) the scale of CO2 emissions has increased nearly to 4 times as that in 1991; (ii) coal consumption constitutes the highest proportion due to the richness of coal resources in China; (iii) per capita CO2 emission has increased from 1.98 to 5.57 t CO2 ; (iv) carbon emission intensity declined significantly from 6.66 to 1.07 kg CO2 USD -1 , but recently it tends to be stable; and (v) regional develop gaps remain in China's Mainland, for according to the provincial data, in many developing regions economic increase over-reliance on fossil fuel consumption. China has made the promises and already taken actions to deal with the high carbon emission. Comprehensively considering the sustainability of development and the uncertainties remaining in global climate change, healthier structures of industry, intensive usage of fossil fuel, and a more balanced development pattern among the southern, central and western China should be put more emphasis.展开更多
This paper investigates long-term energy strategy compatible with significant reduction of world carbon dioxide (CO2) emissions, employing a long-term global energy model, Dynamic New Earth 21 (called DNE21). The ...This paper investigates long-term energy strategy compatible with significant reduction of world carbon dioxide (CO2) emissions, employing a long-term global energy model, Dynamic New Earth 21 (called DNE21). The model seeks the optimal energy mix from 2000 to 2100 that minimizes the world total energy system cost under various kinds of energy and technological constraints, such as energy resource constraints, energy supply and demand balance constraints, and CO2 emissions constraints. This paper discusses the results of primary energy supply, power generation mix, CO2 emission, CCS (carbon capture and storage) and total system costs for six regions including world as a whole. To evaluate viable pathways forward for implementation of sustainable energy strategies, nuclear power generation is a viable source of clean and green energy to mitigate the CO2 emissions. Present research shows simulation results in two cases consisting of no CO2 regulation case (base case) and CO2 REG case (regulation case) which halves the world CO2 emissions by the year 2050. Main findings of this research describe that renewable and nuclear power generation will contribute significantly to mitigate the CO2 emission worldwide.展开更多
The increasing pollution in the atmospheric layer has meant world-wide temperature variations, causing the melting of icecaps and floods, among other environmental factors. This change in temperature has been mainly c...The increasing pollution in the atmospheric layer has meant world-wide temperature variations, causing the melting of icecaps and floods, among other environmental factors. This change in temperature has been mainly caused by the indiscriminate emission of CO2, especially due to the rising number of vehicles in circulation. Researchers have identified that, among other types of fuel, diesel has the highest level of CO2 emission. Hence the need for the development of biodiesel, produced from oleaginous plants, aimed at reducing the emission of this harmful gas into the atmosphere, besides using renewable resources. However, as in any automation process, it is necessary to have sensors, actuators, and controllers, which together perform the automation and control of the production process. Besides that, there are other process variables to be accounted for, such as temperature, flow, and level. Considering such concept, and within the academic context, the creation process of a mini biodiesel plant will be described.展开更多
The study on the enterprise's energy efficiency is one of the most important fields of energy efficiency research. Most studies used DEA and aggregate data to estimate the energy efficiency of enterprises. In this st...The study on the enterprise's energy efficiency is one of the most important fields of energy efficiency research. Most studies used DEA and aggregate data to estimate the energy efficiency of enterprises. In this study, based on Cobb-Douglas production function, we make a SFA model which takes the energy input and CO2 emission into account. By using the SFA model, we calculate the refineries' total-factor energy efficiency with Sinopec refineries' micro-data from 2004 to 2009. Meanwhile, we do empirical study on the factors which influence the energy efficiency. In the last, we put forward some advices so as to improve energy efficiency.展开更多
In the tourism industry, transportation is the greatest consumer of energy and contributes the largest amount of CO2 emissions (ECCE). Airplane flights make up between 60% and 70% of all forms of tourism transport. ...In the tourism industry, transportation is the greatest consumer of energy and contributes the largest amount of CO2 emissions (ECCE). Airplane flights make up between 60% and 70% of all forms of tourism transport. Since airplane travel is the main way for tourists to access islands, airplane travel receives considerable attention in the study of the relationship between island tourism transportation, environment and economy. However, the pa- rameters adopted to estimate ECCE in the literature are usually either out-of-date or taken from papers not written in China. To improve the accuracy of estimates, all the parameters used in this paper are current and were obtained locally. Based on these parameters and a bottom-up approach, a more accurate estimation of ECCE for the off-shore island city of Haikou was obtained in 2012. The results indicate that 24.30% of the city's energy con- sumption, 33.89 P J, was due to tourism transportation, while CO2 emissions were 2.54 Mt. It is incorrect to assume that tourism is "an industry with no pollution". In Haikou, for example, tourism turns out to be the major form of en- ergy consumption in the city. This paper makes several suggestions intended to minimize the negative environ- mental impact from tourism transportation. These include recommending longer stays, a decrease in the number of flights, taxation of airplane emissions, and the setting up an environmental recovery fund.展开更多
基金supported by Major Program of Humanities and Social Science Base,Ministry of Education(No.10JJD630011)
文摘China has set the goal for its CO2 emissions to peak around 2030, which is not only a strategic decision coordinating domestic sustainable development and global climate change mitigation but also an overarching target and a key point of action for China's resource conservation, environmental protection, shift in economic development patterns, and CO2 emission reduction to avoid climate change. The development stage where China maps out the CO2 emission peak target is earlier than that of the developed countries. It is a necessity that the non-fossil energy supplies be able to meet all the increased energy demand for achieving CO2 emission peaking. Given that China's potential GDP annual increasing rate will be more than 4%, and China's total energy demand will continue to increase by approximately 1.0%--1.5% annually around 2030, new and renewable energies will need to increase by 6%-8% annually to meet the desired CO2 emission peak. The share of new and renewable energies in China's total primary energy supply will be approximately 20% by 2030. At that time, the energy consumption elasticity will decrease to around 0.3, and the annual decrease in the rate of CO2 intensity will also be higher than 4% to ensure the sustained growth of GDE To achieve the CO2 emission peaking target and substantially promote the low-carbon deve!opment transformation, China needs to actively promote an energy production and consumption revolution, the innovation of advanced energy technologies, the reform of the energy regulatory system and pricing mechanism, and especially the construction of a national carbon emission cap and trade system.
基金Supported by the Corporate Research Centre for Greenhouse Gas Technology Foundation in Australiathe National Natural Science Foundation of China(51074205)
文摘Different VSA (Vacuum Swing Adsorption) cycles and process schemes have been evaluated to find suitable process configurations for effectively separating C02 from flue gases from different industrial sectors. The cycles were studied using an adsorption simulator developed in our research group, which has been suc- cessfully used to predict experimental results over severa~ years. Commercial zeolite APGIlI and granular ac- tivated carbon were used as the adsorbents. Three-bed VSA cycles with- and without-product purge and 2- stage VSA systems have been investigated. It was found that for a feed gas containing 15% CO2 (representing flue gas from power plants), high CO2 purities and recoveries could be obtained using a three-bed zeolite APGII1 VSA unit for one stage capture, but with more stringent conditions such as deeper vacuum pressures of 1-3 kPa. 2-stage VSA process operated in series allowed us to use simple process steps and operate at more realistic vacuum pressures. With a vacuum pressure of 10 kPa, final C02 purity of 95.3% with a recov- ery of 98.2% were obtained at specific power consumption of 0.55 MJ. (kg CO2) 1 from feed gas containing 15% C02. These numbers compare very well with those obtained from a single stage process operating at I kPa vacuum pressure. The feed CO2 concentration was very influential in determining the desorption pressure necessary to achieve high separation efficiency. For feed gases containing 〉30% CO2, a singlestage VSA capture process operating at moderate vacuum pressure and without a product purge, can achieve very high product purities and recoveries.
文摘The objective of this research is to quantify the EEC (embodied energy/CO2) of a building. The EEC represents the energy consumption and CO2 emissions at individual phases of a building's life-cycle, such as construction (including manufacture of materials and equipment), renewal (including repair work) and demolition. Energy and CO2 emission intensities in terms of 401 sectors were calculated, using the 2005 I-O (input-output) table in Japan. According to our case study conducted from the construction phase to demolition, the EC (embodied CO2) of an office building used for 60 years is 12,044 t-CO2 and 1,093 kg-CO2/m^2 in total. CO2 equivalent emissions (CO2e) by Freon gases, contained in building materials, equipment and devices, were also calculated. As the results, CO2e by insulators was 2% of the building's EC and CO2e by refrigerants was 9%-12% of the building's EC. It is important to keep reducing emissions of Freon gases contained in refrigerators.
基金the National Twelfth-Five Year Science and Technology Support Program(2011BAJ07B03-06)
文摘The first task in ensuring a reduction in CO2 emissions is to quantitatively measure the factors and their effect size on increasing CO2 emissions due to fossil fuel consumption. An extension of the buying and import-noncompetition economy-energy-CO2 emission input-output model was designed to analyze CO2 emission increases for Beijing from 1997-2007. The increase in CO2 emissions because of energy consumption was broken down into nine kinds of effects including the change in energy consumption intensity and structure, and economic scale expansion. We found that the effect of economic scale expansion such as consumption investment, export and selling were the main factors increasing CO2 emissions. The effect of the change in energy consumption intensity was the dominant factor reducing CO2 emissions. CO2 emissions increased rapidly from 2002. The ifrst increase in carbon emissions was related to the service industry, adjustment in industrial structure and the priority given to tertiary industries. High energy consumption manufacturing was the industrial branch driving CO2 emissions; the main industry driving CO2 emission reductions was the energy industry. The new round of industrialization with ‘high carbon’ features meant that CO2 emissions increased rapidly from 2002-2007. The quantity and direction of the nine focal effects varied across industries and different industrial sectors.
基金the National Natural Science Foundation of China (31070384)
文摘In this article, we calculate China's Mainland’s CO2 emission of fossil fuel consumption from 1991 to 2010 following the apparent consumption method recommend by IPCC: (i) the scale of CO2 emissions has increased nearly to 4 times as that in 1991; (ii) coal consumption constitutes the highest proportion due to the richness of coal resources in China; (iii) per capita CO2 emission has increased from 1.98 to 5.57 t CO2 ; (iv) carbon emission intensity declined significantly from 6.66 to 1.07 kg CO2 USD -1 , but recently it tends to be stable; and (v) regional develop gaps remain in China's Mainland, for according to the provincial data, in many developing regions economic increase over-reliance on fossil fuel consumption. China has made the promises and already taken actions to deal with the high carbon emission. Comprehensively considering the sustainability of development and the uncertainties remaining in global climate change, healthier structures of industry, intensive usage of fossil fuel, and a more balanced development pattern among the southern, central and western China should be put more emphasis.
文摘This paper investigates long-term energy strategy compatible with significant reduction of world carbon dioxide (CO2) emissions, employing a long-term global energy model, Dynamic New Earth 21 (called DNE21). The model seeks the optimal energy mix from 2000 to 2100 that minimizes the world total energy system cost under various kinds of energy and technological constraints, such as energy resource constraints, energy supply and demand balance constraints, and CO2 emissions constraints. This paper discusses the results of primary energy supply, power generation mix, CO2 emission, CCS (carbon capture and storage) and total system costs for six regions including world as a whole. To evaluate viable pathways forward for implementation of sustainable energy strategies, nuclear power generation is a viable source of clean and green energy to mitigate the CO2 emissions. Present research shows simulation results in two cases consisting of no CO2 regulation case (base case) and CO2 REG case (regulation case) which halves the world CO2 emissions by the year 2050. Main findings of this research describe that renewable and nuclear power generation will contribute significantly to mitigate the CO2 emission worldwide.
文摘The increasing pollution in the atmospheric layer has meant world-wide temperature variations, causing the melting of icecaps and floods, among other environmental factors. This change in temperature has been mainly caused by the indiscriminate emission of CO2, especially due to the rising number of vehicles in circulation. Researchers have identified that, among other types of fuel, diesel has the highest level of CO2 emission. Hence the need for the development of biodiesel, produced from oleaginous plants, aimed at reducing the emission of this harmful gas into the atmosphere, besides using renewable resources. However, as in any automation process, it is necessary to have sensors, actuators, and controllers, which together perform the automation and control of the production process. Besides that, there are other process variables to be accounted for, such as temperature, flow, and level. Considering such concept, and within the academic context, the creation process of a mini biodiesel plant will be described.
文摘The study on the enterprise's energy efficiency is one of the most important fields of energy efficiency research. Most studies used DEA and aggregate data to estimate the energy efficiency of enterprises. In this study, based on Cobb-Douglas production function, we make a SFA model which takes the energy input and CO2 emission into account. By using the SFA model, we calculate the refineries' total-factor energy efficiency with Sinopec refineries' micro-data from 2004 to 2009. Meanwhile, we do empirical study on the factors which influence the energy efficiency. In the last, we put forward some advices so as to improve energy efficiency.
基金National Natural Science Foundation of China(41101044)Key Project of National Social Science Foundation of China(15AGL012)
文摘In the tourism industry, transportation is the greatest consumer of energy and contributes the largest amount of CO2 emissions (ECCE). Airplane flights make up between 60% and 70% of all forms of tourism transport. Since airplane travel is the main way for tourists to access islands, airplane travel receives considerable attention in the study of the relationship between island tourism transportation, environment and economy. However, the pa- rameters adopted to estimate ECCE in the literature are usually either out-of-date or taken from papers not written in China. To improve the accuracy of estimates, all the parameters used in this paper are current and were obtained locally. Based on these parameters and a bottom-up approach, a more accurate estimation of ECCE for the off-shore island city of Haikou was obtained in 2012. The results indicate that 24.30% of the city's energy con- sumption, 33.89 P J, was due to tourism transportation, while CO2 emissions were 2.54 Mt. It is incorrect to assume that tourism is "an industry with no pollution". In Haikou, for example, tourism turns out to be the major form of en- ergy consumption in the city. This paper makes several suggestions intended to minimize the negative environ- mental impact from tourism transportation. These include recommending longer stays, a decrease in the number of flights, taxation of airplane emissions, and the setting up an environmental recovery fund.