Microorganisms play a key role in the response of soil ecosystems to the rising atmospheric carbon dioxide (CO2) as they mineralize organic matter and drive nutrient cycling. To assess the effects of elevated CO2 on...Microorganisms play a key role in the response of soil ecosystems to the rising atmospheric carbon dioxide (CO2) as they mineralize organic matter and drive nutrient cycling. To assess the effects of elevated CO2 on soil microbial C and N immobilization and on soil enzyme activities, in years 8 (2006) and 9 (2007) of an open-top chamber experiment that begun in spring of 1999, soil was sampled in summer, and microbial biomass and enzyme activity related to the carbon (C), nitrogen (N) and phosphorus (P) cycling were measured. Although no effects on microbial biomass C were detected, changes in microbial biomass N and metabolic activity involving C, N and P were observed under elevated CO2. Invertase and .dehydrogenase activities were significantly enhanced by different degrees of elevated CO2. Nitrifying enzyme activity was significantly (P 〈 0.01) increased in the August 2006 samples that received the elevated COs treatment, as compared to the samples that received the ambient treatment. Denitrifying enzyme activity was significantly (P 〈 0.04) decreased by elevated COs treatments in the August 2006 and June 2007 (P 〈 0.09) samples, β-N-acetylglucosaminidase activity was increased under elevated CO2 by 7% and 25% in June and August 2006, respectively, compared to those under ambient CO2. The results of June 2006 samples showed that acid phosphatase activity was significantly enhanced under elevated CO2. Overall, these results suggested that elevated CO2 might cause changes in the belowground C, N and P cycling in temperate forest soils.展开更多
ZrO2-based mixed metal oxide catalysts for the industrially important dehydrogenation process of ethylbenzene to styrene monomer have been explored by our group for the past 20 years.These efforts were subjected to th...ZrO2-based mixed metal oxide catalysts for the industrially important dehydrogenation process of ethylbenzene to styrene monomer have been explored by our group for the past 20 years.These efforts were subjected to the activation of CO2 over mixed metal oxide catalysts and resulted in several promising benefits to the dehydrogenation processes,such as stabilized conversion and selectivity,suppressed coke formation and commercially-acceptable longevity.In this review,we summarize the most recent developments on ZrO2-based mixed metal oxide catalysts,including the further optimization of sol-gel process in the synthesis of catalysts,rationalizing acid-base properties by doping,co-operative properties between redox and acid-base active sites and additional promoters towards the effective improvement of the longevity of catalysts.展开更多
Porous medium has an obvious effect on the formation of carbon dioxide hydrate. In order to study the characteristics of CO2 hydrate formation in porous medium below the freezing point, the experiment of CO2 hydrate f...Porous medium has an obvious effect on the formation of carbon dioxide hydrate. In order to study the characteristics of CO2 hydrate formation in porous medium below the freezing point, the experiment of CO2 hydrate formation was conducted in a high-pressure 1.8-L cell in the presence of porous media with a particle size of 380 μm, 500 μm and 700 μm, respectively. The test results showed that the porous medium had an important influence on the process of CO2 hydrate formation below the freezing point. Compared with porous media with a particle size of 500 μm and 700 μm, respectively, the average hydrate formation rate and gas storage capacity of carbon dioxide hydrate in the porous medium with a particle size of 380 μm attained 0.016 14 mol/h and 65.094 L/L, respectively. The results also indicated that, within a certain range of particle sizes, the smaller the particle size of porous medium was, the larger the average hydrate formation rate and the gas storage capacity of CO2 hydrate during the process of hydrate formation would be.展开更多
This paper analyzes the physicochemical properties of supercritical C02, the characteristic of shale gas and shale gas reservoirs. The technologies of drilling, production, fracturing using the supercritical CO2 in sh...This paper analyzes the physicochemical properties of supercritical C02, the characteristic of shale gas and shale gas reservoirs. The technologies of drilling, production, fracturing using the supercritical CO2 in shale gas explo- ration are proposed, to increase the penetration rate, decrease the damage to formation while fracturing, and enhance the recovery of shale gas. It is believed that the huge economic benefits of shale gas exploration with the supercritical CO2 fluid will be obtained, and it also can initiate a new technology field of CO2 in the petroleum engineering.展开更多
TiO_2 modified Al_2O_3 binary oxide was prepared by a wet-impregnation method and used as the support for ruthenium catalyst. The catalytic performance of Ru/TiO_2–Al_2O_3catalyst in CO_2 methanation reaction was inv...TiO_2 modified Al_2O_3 binary oxide was prepared by a wet-impregnation method and used as the support for ruthenium catalyst. The catalytic performance of Ru/TiO_2–Al_2O_3catalyst in CO_2 methanation reaction was investigated. Compared with Ru/Al_2O_3 catalyst, the Ru/TiO_2–Al_2O_3catalytic system exhibited a much higher activity in CO_2 methanation reaction. The reaction rate over Ru/TiO_2–Al_2O_3 was 0.59 mol CO_2·(g Ru)1·h-1, 3.1 times higher than that on Ru/Al_2O_3[0.19 mol CO_2·(gRu)-1·h-1]. The effect of TiO_2 content and TiO_2–Al_2O_3calcination temperature on catalytic performance was addressed. The corresponding structures of each catalyst were characterized by means of H_2-TPR, XRD, and TEM. Results indicated that the averaged particle size of the Ru on TiO_2–Al_2O_3support is 2.8 nm, smaller than that on Al_2O_3 support of 4.3 nm. Therefore, we conclude that the improved activity over Ru/TiO_2–Al_2O_3catalyst is originated from the smaller particle size of ruthenium resulting from a strong interaction between Ru and the rutile-TiO_2 support, which hindered the aggregation of Ru nanoparticles.展开更多
Phosphorus (P) is a major limiting factor for plant productivity in many ecosystems and agriculture. The projected increase in atmospheric CO2 is likely to result in changes in plant mineral consumption and growth. ...Phosphorus (P) is a major limiting factor for plant productivity in many ecosystems and agriculture. The projected increase in atmospheric CO2 is likely to result in changes in plant mineral consumption and growth. We studied P depletion by common bean (Phaseolus vulgaris) cultured hydroponically under ambient (377±77μmol mol^-1) or elevated (650±32 μmol mol^-1) CO2 in media of low or high P. Under elevated CO2 compared to ambient CO2, the maximum P depletion rate increased by 98% at low P and 250% at high P, and P was depleted about 2-5 weeks sooner; leaf acid phosphatase (APase) activity and chlorophyll content both increased significantly; root-to-shoot ratio increased significantly at high P, although it was unaffected at low P; lateral root respiration rate showed no change, suggesting that COs did not affect P depletion via metabolic changes to the roots; the total biomass at final harvest was significantly higher at both low and high P. Our data showed that the increased rate and amount of P depletion during plant growth under elevated CO2 occurred in association with alterations in leaf biochemical properties, i.e., enhanced activities of leaf APase and increased leaf chlorophyll content.展开更多
The effects of solid-fluid interactions on the vapor-liquid phase diagram,coexistence density,relative volatility and vaporization enthalpy have been investigated for confined binary systems of CO 2-CH 4,CO 2-N 2 and ...The effects of solid-fluid interactions on the vapor-liquid phase diagram,coexistence density,relative volatility and vaporization enthalpy have been investigated for confined binary systems of CO 2-CH 4,CO 2-N 2 and CH 4-N 2.The Gibbs ensemble Monte Carlo(GEMC) simulation results indicate that the confinement and the solid-fluid interaction have significant influences on the vapor-liquid equilibrium properties.The confinement and the strength of the solid-fluid interaction make the p-x i phase diagram move to higher pressure regions.They also make the two-phase region become narrower for each binary mixture.The strength of the solid-fluid interactions can cause increases in the coexistence liquid and vapor densities,and cause the decrease of the relative volatility and the vaporization enthalpy for the systems studied.As the pore width is decreased,the two-phase region of the binary mixture becomes narrower.展开更多
To date, few reports have been concerned with the physical properties of the liquid phases of imidazoles and benzimidazoles- potential starting materials for a great number of ionic liquids. Prior research has indicat...To date, few reports have been concerned with the physical properties of the liquid phases of imidazoles and benzimidazoles- potential starting materials for a great number of ionic liquids. Prior research has indicated that alkylimidazole solvents exhibit different, and potentially advantageous physical properties, when compared to corresponding imidazolium-based ionic liquids. Given that even the most fundamental physical properties of alkylimidazole solvents have only recently been reported, there is still a lack of data for other relevant imidazole derivatives, including benzimidazoles. In this work, we have synthesized a se- ries of eight 1-n-alkylbenzimidazoles, with chain lengths ranging from ethyl to dodecyl, all of which exist as neat liquids at ambient temperature. Their densities and viscosities have been determined as functions of both temperature and molecular weight. Alkylbenzimidazoles have been found to exhibit viscosities that are more similar to imidazolium-based ILs than al- kylimidazoles, owed to a large contribution to viscosity from the presence of a fused ring system. Solubilities of CO2 and SO2, two species of concern in the emission of coal-fired power generation, were determined for selected alkylbenzimidazoles to understand what effects a fused ring system might have on gas solubility. For both gases, alkylbenzimidazoles were deter- mined to experience physical, non-chemically reactive, interactions. The solubility of CO2 in alkylbenzimidazoles is 10%-30% less than observed for corresponding ILs and alkylimidazoles. 1-butylbenzimidazole was found to readily absorb at least 0.333 gram SO2 per gram at low pressure and ambient temperature, which could be readily desorbed under an N: flush, a behavior more similar to imidazolium-based ILs than alkylimidazoles. Thus, we find that as solvents for gas separations, benzimidazoles share characteristics with both ILs and alkylimidazoles.展开更多
基金Supported by the National Natural Science Foundation of China (No.90411020)
文摘Microorganisms play a key role in the response of soil ecosystems to the rising atmospheric carbon dioxide (CO2) as they mineralize organic matter and drive nutrient cycling. To assess the effects of elevated CO2 on soil microbial C and N immobilization and on soil enzyme activities, in years 8 (2006) and 9 (2007) of an open-top chamber experiment that begun in spring of 1999, soil was sampled in summer, and microbial biomass and enzyme activity related to the carbon (C), nitrogen (N) and phosphorus (P) cycling were measured. Although no effects on microbial biomass C were detected, changes in microbial biomass N and metabolic activity involving C, N and P were observed under elevated CO2. Invertase and .dehydrogenase activities were significantly enhanced by different degrees of elevated CO2. Nitrifying enzyme activity was significantly (P 〈 0.01) increased in the August 2006 samples that received the elevated COs treatment, as compared to the samples that received the ambient treatment. Denitrifying enzyme activity was significantly (P 〈 0.04) decreased by elevated COs treatments in the August 2006 and June 2007 (P 〈 0.09) samples, β-N-acetylglucosaminidase activity was increased under elevated CO2 by 7% and 25% in June and August 2006, respectively, compared to those under ambient CO2. The results of June 2006 samples showed that acid phosphatase activity was significantly enhanced under elevated CO2. Overall, these results suggested that elevated CO2 might cause changes in the belowground C, N and P cycling in temperate forest soils.
基金funded by Saudi Arabia Basic Industries Corporation(Kingdom of Saudi Arabia),the BK21 Plus Project in 2014
文摘ZrO2-based mixed metal oxide catalysts for the industrially important dehydrogenation process of ethylbenzene to styrene monomer have been explored by our group for the past 20 years.These efforts were subjected to the activation of CO2 over mixed metal oxide catalysts and resulted in several promising benefits to the dehydrogenation processes,such as stabilized conversion and selectivity,suppressed coke formation and commercially-acceptable longevity.In this review,we summarize the most recent developments on ZrO2-based mixed metal oxide catalysts,including the further optimization of sol-gel process in the synthesis of catalysts,rationalizing acid-base properties by doping,co-operative properties between redox and acid-base active sites and additional promoters towards the effective improvement of the longevity of catalysts.
基金financially supported by the Natural Science Foundation of China (No. 51266005)the Science and Technology Research Key Project of the Ministry of Education (No. 1106ZBB007)+1 种基金the Hongliu Outstanding Talent Program of LUT (No. Q201101)the Open Fund of Natural Gas Hydrate Key Laboratory, Chinese Academy of Sciences (No. y007s3)
文摘Porous medium has an obvious effect on the formation of carbon dioxide hydrate. In order to study the characteristics of CO2 hydrate formation in porous medium below the freezing point, the experiment of CO2 hydrate formation was conducted in a high-pressure 1.8-L cell in the presence of porous media with a particle size of 380 μm, 500 μm and 700 μm, respectively. The test results showed that the porous medium had an important influence on the process of CO2 hydrate formation below the freezing point. Compared with porous media with a particle size of 500 μm and 700 μm, respectively, the average hydrate formation rate and gas storage capacity of carbon dioxide hydrate in the porous medium with a particle size of 380 μm attained 0.016 14 mol/h and 65.094 L/L, respectively. The results also indicated that, within a certain range of particle sizes, the smaller the particle size of porous medium was, the larger the average hydrate formation rate and the gas storage capacity of CO2 hydrate during the process of hydrate formation would be.
基金Key Project of Chinese National Programs for Fundamental Research and Development(973 Program) (No. 2010CB226704)Chinese National Natural Science Foundation (No. 51034007 )+1 种基金the China National Petroleum Corporation Key Project Foundation (No. 2011A-4205)China Postdoctoral Science Foundation(No. 2011M500492)
文摘This paper analyzes the physicochemical properties of supercritical C02, the characteristic of shale gas and shale gas reservoirs. The technologies of drilling, production, fracturing using the supercritical CO2 in shale gas explo- ration are proposed, to increase the penetration rate, decrease the damage to formation while fracturing, and enhance the recovery of shale gas. It is believed that the huge economic benefits of shale gas exploration with the supercritical CO2 fluid will be obtained, and it also can initiate a new technology field of CO2 in the petroleum engineering.
基金Supported by the National Natural Science Foundation of China(211031735127108721476226 and 51471076)DICP Fundamental Research Program for Clean Energy(DICPM201307)
文摘TiO_2 modified Al_2O_3 binary oxide was prepared by a wet-impregnation method and used as the support for ruthenium catalyst. The catalytic performance of Ru/TiO_2–Al_2O_3catalyst in CO_2 methanation reaction was investigated. Compared with Ru/Al_2O_3 catalyst, the Ru/TiO_2–Al_2O_3catalytic system exhibited a much higher activity in CO_2 methanation reaction. The reaction rate over Ru/TiO_2–Al_2O_3 was 0.59 mol CO_2·(g Ru)1·h-1, 3.1 times higher than that on Ru/Al_2O_3[0.19 mol CO_2·(gRu)-1·h-1]. The effect of TiO_2 content and TiO_2–Al_2O_3calcination temperature on catalytic performance was addressed. The corresponding structures of each catalyst were characterized by means of H_2-TPR, XRD, and TEM. Results indicated that the averaged particle size of the Ru on TiO_2–Al_2O_3support is 2.8 nm, smaller than that on Al_2O_3 support of 4.3 nm. Therefore, we conclude that the improved activity over Ru/TiO_2–Al_2O_3catalyst is originated from the smaller particle size of ruthenium resulting from a strong interaction between Ru and the rutile-TiO_2 support, which hindered the aggregation of Ru nanoparticles.
基金supported by the Truman State University Math Bio Programthe National Science Foundation, USA (Nos. 0436348 and 0337769)
文摘Phosphorus (P) is a major limiting factor for plant productivity in many ecosystems and agriculture. The projected increase in atmospheric CO2 is likely to result in changes in plant mineral consumption and growth. We studied P depletion by common bean (Phaseolus vulgaris) cultured hydroponically under ambient (377±77μmol mol^-1) or elevated (650±32 μmol mol^-1) CO2 in media of low or high P. Under elevated CO2 compared to ambient CO2, the maximum P depletion rate increased by 98% at low P and 250% at high P, and P was depleted about 2-5 weeks sooner; leaf acid phosphatase (APase) activity and chlorophyll content both increased significantly; root-to-shoot ratio increased significantly at high P, although it was unaffected at low P; lateral root respiration rate showed no change, suggesting that COs did not affect P depletion via metabolic changes to the roots; the total biomass at final harvest was significantly higher at both low and high P. Our data showed that the increased rate and amount of P depletion during plant growth under elevated CO2 occurred in association with alterations in leaf biochemical properties, i.e., enhanced activities of leaf APase and increased leaf chlorophyll content.
基金supported by National Natural Science Foundation of China (20876083,20736003)the Specialized Research Fund forthe Doctoral Program of Higher Education (20100002110024)Major State Basic Research Program of China (2009CB623404)
文摘The effects of solid-fluid interactions on the vapor-liquid phase diagram,coexistence density,relative volatility and vaporization enthalpy have been investigated for confined binary systems of CO 2-CH 4,CO 2-N 2 and CH 4-N 2.The Gibbs ensemble Monte Carlo(GEMC) simulation results indicate that the confinement and the solid-fluid interaction have significant influences on the vapor-liquid equilibrium properties.The confinement and the strength of the solid-fluid interaction make the p-x i phase diagram move to higher pressure regions.They also make the two-phase region become narrower for each binary mixture.The strength of the solid-fluid interactions can cause increases in the coexistence liquid and vapor densities,and cause the decrease of the relative volatility and the vaporization enthalpy for the systems studied.As the pore width is decreased,the two-phase region of the binary mixture becomes narrower.
基金supported by ION Engineering, LLCUnited States Department of Energy-National Energy Technology Laboratory(DE-FE00005799)the National Science Foundation Research Experiences for Undergraduates Program (EEC-1062705)
文摘To date, few reports have been concerned with the physical properties of the liquid phases of imidazoles and benzimidazoles- potential starting materials for a great number of ionic liquids. Prior research has indicated that alkylimidazole solvents exhibit different, and potentially advantageous physical properties, when compared to corresponding imidazolium-based ionic liquids. Given that even the most fundamental physical properties of alkylimidazole solvents have only recently been reported, there is still a lack of data for other relevant imidazole derivatives, including benzimidazoles. In this work, we have synthesized a se- ries of eight 1-n-alkylbenzimidazoles, with chain lengths ranging from ethyl to dodecyl, all of which exist as neat liquids at ambient temperature. Their densities and viscosities have been determined as functions of both temperature and molecular weight. Alkylbenzimidazoles have been found to exhibit viscosities that are more similar to imidazolium-based ILs than al- kylimidazoles, owed to a large contribution to viscosity from the presence of a fused ring system. Solubilities of CO2 and SO2, two species of concern in the emission of coal-fired power generation, were determined for selected alkylbenzimidazoles to understand what effects a fused ring system might have on gas solubility. For both gases, alkylbenzimidazoles were deter- mined to experience physical, non-chemically reactive, interactions. The solubility of CO2 in alkylbenzimidazoles is 10%-30% less than observed for corresponding ILs and alkylimidazoles. 1-butylbenzimidazole was found to readily absorb at least 0.333 gram SO2 per gram at low pressure and ambient temperature, which could be readily desorbed under an N: flush, a behavior more similar to imidazolium-based ILs than alkylimidazoles. Thus, we find that as solvents for gas separations, benzimidazoles share characteristics with both ILs and alkylimidazoles.