The solar-driven catalytic conversion of CO2 to useful chemical fuels is regarded as an environmentally friendly approach to reduce the consumption of fossil fuels and mitigate the greenhouse effect.However,it is high...The solar-driven catalytic conversion of CO2 to useful chemical fuels is regarded as an environmentally friendly approach to reduce the consumption of fossil fuels and mitigate the greenhouse effect.However,it is highly intriguing and challenging to promote the selectivity and efficiency of visible-light-responsive photocatalysts that favor the adsorption of CO2 in photoreduction processes.In this work,three-dimensional hierarchical Cd0.8Zn0.2S flowers(C8Z2S-F)with ultrathin petals were successfully synthesized through an in-situ self-assembly growth process using sodium citrate as a morphology director.The flower-like Cd0.8Zn0.2S solid solution exhibited remarkable photocatalytic performance in the reduction of CO2,generating CO up to 41.4μmol g^−1 under visible-light illumination for 3 h;this was nearly three times greater than that of Cd0.8Zn0.2S nanoparticles(C8Z2S-NP)(14.7μmol g^−1).Particularly,a comparably high selectivity of 89.9%for the conversion of CO2 to CO,with a turnover number of 39.6,was obtained from the solar-driven C8Z2S-F system in the absence of any co-catalyst or sacrificial agent.Terahertz time-domain spectroscopy indicated that the introduction of flower structures enhanced the light-harvesting capacity of C8Z2S-F.The in situ diffuse reflectance infrared Fourier transform spectroscopy unveiled the existence of surface-adsorbed species and the conversion of photoreduction intermediates during the photocatalytic process.Empirical characterizations and predictions of the photocatalytic mechanism demonstrated that the flower-like Cd0.8Zn0.2S solid solution possessed desirable CO2 adsorption properties and an enhanced charge-transfer capability,thus providing a highly effective photocatalytic reduction of CO2.展开更多
The electrochemical reduction of CO2(CO2 RR) can substantially contribute to the production of useful chemicals and reduction of global CO2 emissions. Herein, we presented N and S dual-doped high-surface-area carbon m...The electrochemical reduction of CO2(CO2 RR) can substantially contribute to the production of useful chemicals and reduction of global CO2 emissions. Herein, we presented N and S dual-doped high-surface-area carbon materials(SZ-HCN) as CO2 RR catalysts. N and S were doped by one-step pyrolysis of a N-containing polymer and S powder. ZnCl2 was applied as a volatile porogen to prepare porous SZ-HCN. SZ-HCN with a high specific surface area(1510 m2 g–1) exhibited efficient electrocatalytic activity and selectivity for CO2 RR. Electrochemical measurements demonstrated that SZ-HCN showed excellent catalytic performance for CO2-to-CO reduction with a high CO Faradaic efficiency(~93%) at-0.6 V. Furthermore, SZ-HCN offered a stable current density and high CO selectivity over at least 20 h continuous operation, revealing remarkable electrocatalytic durability. The experimental results and density functional theory calculations indicated that N and S dual-doped carbon materials required lower Gibbs free energy to form the COOH* intermediate than that for single-N-doped carbon for CO2-to-CO reduction, thereby enhancing CO2 RR activity.展开更多
Fixed carrier membrane exhibits attractive CO2 permeance and selectivity due to its transport mechanism of reaction selectivity (facilitated transport). However, its performance needs improvement to meet cost target...Fixed carrier membrane exhibits attractive CO2 permeance and selectivity due to its transport mechanism of reaction selectivity (facilitated transport). However, its performance needs improvement to meet cost targets for CO2 capture. This study attempts to develop membranes with multiple permselective mechanisms in order to enhance CO2 separation performance of fixed carder membrane. In this study, a novel membrane with multiplepermselective mechanisms of solubility selectivity and reaction selectivity was developed by incorporating CO2-selective adsorptive silica nanoparticles in situ into the tertiary amine containing polyamide membrane formed by interfacial polymerization (IP). Various techniques were employed to characterize the polyamide and polyam-ide-silica composite membranes. The TGA result shows that nanocomposite membranes exhlbit superior-thermal stability than pure polyamide membranes. In addition, gas permeation experiments show that both nanocomposite membranes have larger CO2 permeance than pure polyamide membranes. The enhanced CO2/N2 separation performance for nanocomposite membranes is mainly due to the thin film thickness, and multiple permselective mechanisms of solubility selectivity and reaction selectivity.展开更多
Single‐atom catalysts(SACs)have demonstrated excellent performances in chemoselective hydrogenation reactions.However,the employment of precious metals and/or organic solvents compromises their sustainability.Herein,...Single‐atom catalysts(SACs)have demonstrated excellent performances in chemoselective hydrogenation reactions.However,the employment of precious metals and/or organic solvents compromises their sustainability.Herein,we for the first time report the chemoselective hydrogenation of 3‐nitrostyrene over noble‐metal‐free Co‐N‐C SAC in green solvent—compressed CO2.An interesting inverted V‐curve relation is observed between the catalytic activity and CO2 pressure,where the conversion of 3‐nitrostyrene reaches the maximum of 100%at 5.0 MPa CO2(total pressure of 8.1 MPa).Meanwhile,the selectivities to 3‐vinylaniline at all pressures remain high(>99%).Phase behavior studies reveal that,in sharp contrast with the single phase which is formed at total pressure above 10.8 MPa,bi‐phase composed of CO2/H_(2)gas‐rich phase and CO2‐expanded substrate liquid phase forms at total pressure of 8.1 MPa,which dramatically changes the reaction kinetics of the catalytic system.The reaction order with respect to H_(2)pressure decreases from~0.5 to zero at total pressure of 8.1 MPa,suggesting the dissolved CO2 in 3‐nitrostyrene greatly promotes the dissolution of H_(2)in the substrate,which is responsible for the high catalytic activity at the peak of the inverted V‐curve.展开更多
为进一步提高Mn-TiO_2/分子筛催化剂和等离子体协同的催化活性,增加CO2选择性,减少O3产量。以5A分子筛为催化剂载体,采用浸渍法并利用Ag改性制备了Ag-Mn-TiO_2/分子筛催化剂,并运用XRD、SEM、EDS和FT-IR等技术对催化剂进行了表征。在针...为进一步提高Mn-TiO_2/分子筛催化剂和等离子体协同的催化活性,增加CO2选择性,减少O3产量。以5A分子筛为催化剂载体,采用浸渍法并利用Ag改性制备了Ag-Mn-TiO_2/分子筛催化剂,并运用XRD、SEM、EDS和FT-IR等技术对催化剂进行了表征。在针-板式高压脉冲反应器中研究了Ag的负载量与焙烧温度对Ag-Mn-TiO_2/分子筛催化剂的催化活性、CO2选择性和O3的产量的影响。结果表明:掺杂Ag后,促进Mn价态向+4价转变,提高了Mn-TiO_2/分子筛催化剂活性;焙烧温度为500℃时,Ag和Mn在分子筛上分布均匀,有利于Ag和Mn氧化物晶粒成长。当脉冲电压20 k V,Ag负载量为4%时,Ag-Mn-TiO_2/分子筛催化剂的甲醛去除率达到97.6%,O3浓度为99.4 mg·m-3,CO2选择性为50.2%。展开更多
A flexible metal-organic framework of la Cu(FMA)(4,4'-Bpe)0.s (FMA=fumarate; 4,4'Bpe=trans-bis-(4-pyridyl)ethylene) that exhibits guest molecule-controlled gate-opening adsorption has been reported, in which...A flexible metal-organic framework of la Cu(FMA)(4,4'-Bpe)0.s (FMA=fumarate; 4,4'Bpe=trans-bis-(4-pyridyl)ethylene) that exhibits guest molecule-controlled gate-opening adsorption has been reported, in which the flexible pores can be enlarged by CO2 molecules rather than CH4 and N2 under a certain gate-opening pressure. The CO2 uptake can be sharply improved from 6.85 cm3 gq at 0.60 atm to 33.7 cm3 g^-1 at 1 atm due to the gate-opening effect, thus resulting in the notably enhanced adsorption selectivities for CO2/CH4 (32:1, v/v) and CO2/N2 (48:1, v/v) separations at room temperature.展开更多
文摘The solar-driven catalytic conversion of CO2 to useful chemical fuels is regarded as an environmentally friendly approach to reduce the consumption of fossil fuels and mitigate the greenhouse effect.However,it is highly intriguing and challenging to promote the selectivity and efficiency of visible-light-responsive photocatalysts that favor the adsorption of CO2 in photoreduction processes.In this work,three-dimensional hierarchical Cd0.8Zn0.2S flowers(C8Z2S-F)with ultrathin petals were successfully synthesized through an in-situ self-assembly growth process using sodium citrate as a morphology director.The flower-like Cd0.8Zn0.2S solid solution exhibited remarkable photocatalytic performance in the reduction of CO2,generating CO up to 41.4μmol g^−1 under visible-light illumination for 3 h;this was nearly three times greater than that of Cd0.8Zn0.2S nanoparticles(C8Z2S-NP)(14.7μmol g^−1).Particularly,a comparably high selectivity of 89.9%for the conversion of CO2 to CO,with a turnover number of 39.6,was obtained from the solar-driven C8Z2S-F system in the absence of any co-catalyst or sacrificial agent.Terahertz time-domain spectroscopy indicated that the introduction of flower structures enhanced the light-harvesting capacity of C8Z2S-F.The in situ diffuse reflectance infrared Fourier transform spectroscopy unveiled the existence of surface-adsorbed species and the conversion of photoreduction intermediates during the photocatalytic process.Empirical characterizations and predictions of the photocatalytic mechanism demonstrated that the flower-like Cd0.8Zn0.2S solid solution possessed desirable CO2 adsorption properties and an enhanced charge-transfer capability,thus providing a highly effective photocatalytic reduction of CO2.
文摘The electrochemical reduction of CO2(CO2 RR) can substantially contribute to the production of useful chemicals and reduction of global CO2 emissions. Herein, we presented N and S dual-doped high-surface-area carbon materials(SZ-HCN) as CO2 RR catalysts. N and S were doped by one-step pyrolysis of a N-containing polymer and S powder. ZnCl2 was applied as a volatile porogen to prepare porous SZ-HCN. SZ-HCN with a high specific surface area(1510 m2 g–1) exhibited efficient electrocatalytic activity and selectivity for CO2 RR. Electrochemical measurements demonstrated that SZ-HCN showed excellent catalytic performance for CO2-to-CO reduction with a high CO Faradaic efficiency(~93%) at-0.6 V. Furthermore, SZ-HCN offered a stable current density and high CO selectivity over at least 20 h continuous operation, revealing remarkable electrocatalytic durability. The experimental results and density functional theory calculations indicated that N and S dual-doped carbon materials required lower Gibbs free energy to form the COOH* intermediate than that for single-N-doped carbon for CO2-to-CO reduction, thereby enhancing CO2 RR activity.
基金Supported by the National Natural Science Foundation of China (20836006), the National Basic Research Program (2009CB623405), the Science & Technology Pillar Program of Tianjin (10ZCKFSH01700), the Programme of Introducing Talents of Discipline to Universities (B06006), and the Cheung Kong Scholar Program for Innovative Teams of the Ministry of Education (IRT0641).
文摘Fixed carrier membrane exhibits attractive CO2 permeance and selectivity due to its transport mechanism of reaction selectivity (facilitated transport). However, its performance needs improvement to meet cost targets for CO2 capture. This study attempts to develop membranes with multiple permselective mechanisms in order to enhance CO2 separation performance of fixed carder membrane. In this study, a novel membrane with multiplepermselective mechanisms of solubility selectivity and reaction selectivity was developed by incorporating CO2-selective adsorptive silica nanoparticles in situ into the tertiary amine containing polyamide membrane formed by interfacial polymerization (IP). Various techniques were employed to characterize the polyamide and polyam-ide-silica composite membranes. The TGA result shows that nanocomposite membranes exhlbit superior-thermal stability than pure polyamide membranes. In addition, gas permeation experiments show that both nanocomposite membranes have larger CO2 permeance than pure polyamide membranes. The enhanced CO2/N2 separation performance for nanocomposite membranes is mainly due to the thin film thickness, and multiple permselective mechanisms of solubility selectivity and reaction selectivity.
文摘Single‐atom catalysts(SACs)have demonstrated excellent performances in chemoselective hydrogenation reactions.However,the employment of precious metals and/or organic solvents compromises their sustainability.Herein,we for the first time report the chemoselective hydrogenation of 3‐nitrostyrene over noble‐metal‐free Co‐N‐C SAC in green solvent—compressed CO2.An interesting inverted V‐curve relation is observed between the catalytic activity and CO2 pressure,where the conversion of 3‐nitrostyrene reaches the maximum of 100%at 5.0 MPa CO2(total pressure of 8.1 MPa).Meanwhile,the selectivities to 3‐vinylaniline at all pressures remain high(>99%).Phase behavior studies reveal that,in sharp contrast with the single phase which is formed at total pressure above 10.8 MPa,bi‐phase composed of CO2/H_(2)gas‐rich phase and CO2‐expanded substrate liquid phase forms at total pressure of 8.1 MPa,which dramatically changes the reaction kinetics of the catalytic system.The reaction order with respect to H_(2)pressure decreases from~0.5 to zero at total pressure of 8.1 MPa,suggesting the dissolved CO2 in 3‐nitrostyrene greatly promotes the dissolution of H_(2)in the substrate,which is responsible for the high catalytic activity at the peak of the inverted V‐curve.
文摘为进一步提高Mn-TiO_2/分子筛催化剂和等离子体协同的催化活性,增加CO2选择性,减少O3产量。以5A分子筛为催化剂载体,采用浸渍法并利用Ag改性制备了Ag-Mn-TiO_2/分子筛催化剂,并运用XRD、SEM、EDS和FT-IR等技术对催化剂进行了表征。在针-板式高压脉冲反应器中研究了Ag的负载量与焙烧温度对Ag-Mn-TiO_2/分子筛催化剂的催化活性、CO2选择性和O3的产量的影响。结果表明:掺杂Ag后,促进Mn价态向+4价转变,提高了Mn-TiO_2/分子筛催化剂活性;焙烧温度为500℃时,Ag和Mn在分子筛上分布均匀,有利于Ag和Mn氧化物晶粒成长。当脉冲电压20 k V,Ag负载量为4%时,Ag-Mn-TiO_2/分子筛催化剂的甲醛去除率达到97.6%,O3浓度为99.4 mg·m-3,CO2选择性为50.2%。
基金supported by an award AX-1730 from the Welch Foundation (BC)
文摘A flexible metal-organic framework of la Cu(FMA)(4,4'-Bpe)0.s (FMA=fumarate; 4,4'Bpe=trans-bis-(4-pyridyl)ethylene) that exhibits guest molecule-controlled gate-opening adsorption has been reported, in which the flexible pores can be enlarged by CO2 molecules rather than CH4 and N2 under a certain gate-opening pressure. The CO2 uptake can be sharply improved from 6.85 cm3 gq at 0.60 atm to 33.7 cm3 g^-1 at 1 atm due to the gate-opening effect, thus resulting in the notably enhanced adsorption selectivities for CO2/CH4 (32:1, v/v) and CO2/N2 (48:1, v/v) separations at room temperature.