期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Fine quantitative characterization of high-H2S gas reservoirs under the influence of liquid sulfur deposition and adsorption
1
作者 LI Tong MA Yongsheng +3 位作者 ZENG Daqian LI Qian ZHAO Guang SUN Ning 《Petroleum Exploration and Development》 SCIE 2024年第2期416-429,共14页
In order to clarify the influence of liquid sulfur deposition and adsorption to high-H2S gas reservoirs,three types of natural cores with typical carbonate pore structures were selected for high-temperature and high-p... In order to clarify the influence of liquid sulfur deposition and adsorption to high-H2S gas reservoirs,three types of natural cores with typical carbonate pore structures were selected for high-temperature and high-pressure core displacement experiments.Fine quantitative characterization of the cores in three steady states(original,after sulfur injection,and after gas flooding)was carried out using the nuclear magnetic resonance(NMR)transverse relaxation time spectrum and imaging,X-ray computer tomography(CT)of full-diameter cores,basic physical property testing,and field emission scanning electron microscopy imaging.The loss of pore volume caused by sulfur deposition and adsorption mainly comes from the medium and large pores with sizes bigger than 1000μm.Liquid sulfur has a stronger adsorption and deposition ability in smaller pore spaces,and causes greater damage to reservoirs with poor original pore structures.The pore structure of the three types of carbonate reservoirs shows multiple fractal characteristics.The worse the pore structure,the greater the change of internal pore distribution caused by liquid sulfur deposition and adsorption,and the stronger the heterogeneity.Liquid sulfur deposition and adsorption change the pore size distribution,pore connectivity,and heterogeneity of the rock,which further changes the physical properties of the reservoir.After sulfur injection and gas flooding,the permeability of TypeⅠreservoirs with good physical properties decreased by 16%,and that of TypesⅡandⅢreservoirs with poor physical properties decreased by 90%or more,suggesting an extremely high damage.This indicates that the worse the initial physical properties,the greater the damage of liquid sulfur deposition and adsorption.Liquid sulfur is adsorbed and deposited in different types of pore space in the forms of flocculence,cobweb,or retinitis,causing different changes in the pore structure and physical property of the reservoir. 展开更多
关键词 high-H2S gas reservoir liquid sulfur adsorption and deposition pore structure physical property reservoir characterization
下载PDF
Experimental Investigation on Condensate Revaporization During Gas Injection Development in Fractured Gas Condensate Reservoirs
2
作者 Lei Zhang Yingxu He +3 位作者 Jintao Wu Haojun Wu Lei Huang Linna Sun 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期575-582,共8页
The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs si... The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs significantly from that observed in sand gas condensate reservoirs. However, studies on improving the recovery of fractured gas condensate reservoirs are limited;thus, the impact of retrograde vaporization on condensate within fractured metamorphic buried-hill reservoirs remains unclear. To address this gap, a series of gas injection experiments are conducted in pressure-volume-temperature(PVT) cells and long-cores to investigate the retrograde vaporization effect of condensate using different gas injection media in fractured gas condensate reservoirs. We analyze the variation in condensate volume, gas-to-oil ratio, and condensate recovery during gas injection and examine the influence of various gas injection media(CO_(2), N_(2), and dry gas) under different reservoir properties and varying gas injection times. The results demonstrate that the exchange of components between injected gas and condensate significantly influences condensate retrograde vaporization in the formation. Compared with dry gas injection and N_(2) injection,CO_(2) injection exhibits a superior retrograde vaporization effect. At a CO_(2) injection volume of 1 PV, the percentage shrinkage volume of condensate is 13.82%. Additionally, at the maximum retrograde condensation pressure, CO_(2) injection can increase the recovery of condensate by 22.4%. However, the condensate recovery is notably lower in fractured gas condensate reservoirs than in homogeneous reservoirs, owing to the creation of dominant gas channeling by fractures, which leads to decreased condensate recovery. Regarding gas injection timing, the effect of gas injection at reservoir pressure on improving condensate recovery is superior to that of gas injection at the maximum retrograde condensation pressure. This research provides valuable guidance for designing gas injection development plans and dynamic tracking adjustments for fractured gas condensate reservoirs. 展开更多
关键词 Buried-hill fractured reservoir gas condensate reservoir Retrograde condensation CO_(2)injection Retrograde vaporization
下载PDF
Profile improvement during CO_2 flooding in ultra-low permeability reservoirs 被引量:13
3
作者 Zhao Fenglan Zhang Lei +1 位作者 Hou Jirui Cao Shujun 《Petroleum Science》 SCIE CAS CSCD 2014年第2期279-286,共8页
Gas flooding such as CO2 flooding may be effectively applied to ultra-low permeability reservoirs, but gas channeling is inevitable due to low viscosity and high mobility of gas and formation heterogeneity. In order t... Gas flooding such as CO2 flooding may be effectively applied to ultra-low permeability reservoirs, but gas channeling is inevitable due to low viscosity and high mobility of gas and formation heterogeneity. In order to mitigate or prevent gas channeling, ethylenediamine is chosen for permeability profile control. The reaction mechanism of ethylenediamine with CO2, injection performance, swept volume, and enhanced oil recovery were systematically evaluated. The reaction product of ethylenediamine and CO2 was a white solid or a light yellow viscous liquid, which would mitigate or prevent gas channeling. Also, ethylenediamine could be easily injected into ultra-low permeability cores at high temperature with protective ethanol slugs. The core was swept by injection of 0.3 PV ethylenediamine. Oil displacement tests performed on heterogeneous models with closed fractures, oil recovery was significantly enhanced with injection of ethylenediamine. Experimental results showed that using ethylenediamine to plug high permeability layers would provide a new research idea for the gas injection in fractured, heterogeneous and ultra-low permeability reservoirs. This technology has the potential to be widely applied in oilfields. 展开更多
关键词 ETHYLENEDIAMINE organic amine profile improvement ultra-low permeability reservoirs mitigation of gas channeling co2 flooding
下载PDF
Geological characteristics and accumulation mechanisms of the "continuous" tight gas reservoirs of the Xu2 Member in the middle-south transition region,Sichuan Basin,China 被引量:12
4
作者 Zou Caineng Gong Yanjie +1 位作者 Tao Shizhen Liu Shaobo 《Petroleum Science》 SCIE CAS CSCD 2013年第2期171-182,共12页
"Continuous" tight gas reservoirs are those reservoirs which develop in widespread tight sandstones with a continuous distribution of natural gas. In this paper, we summarize the geological features of the source ro... "Continuous" tight gas reservoirs are those reservoirs which develop in widespread tight sandstones with a continuous distribution of natural gas. In this paper, we summarize the geological features of the source rocks and "'continuous" tight gas reservoirs in the Xujiahe Formation of the middle- south transition region, Sichuan Basin. The source rocks of the Xul Member and reservoir rocks of the Xu2 Member are thick (Xul Member: 40 m, Xu2 Member: 120 m) and are distributed continuously in this study area. The results of drilled wells show that the widespread sandstone reservoirs of the Xu2 Member are charged with natural gas. Therefore, the natural gas reservoirs of the Xu2 Member in the middle-south transition region are "continuous" tight gas reservoirs. The accumulation of "continuous" tight gas reservoirs is controlled by an adequate driving force of the pressure differences between source rocks and reservoirs, which is demonstrated by a "one-dimensional" physical simulation experiment. In this simulation, the natural gas of"continuous" tight gas reservoirs moves tbrward with no preferential petroleum migration pathways (PPMP), and the natural gas saturation of"continuous" tight gas reservoirs is higher than that of conventional reservoirs. 展开更多
关键词 Geological characteristics accumulation mechanism "continuous" tight gas reservoir Xu2Member middle-south transition region Sichuan Basin
下载PDF
Geothermal energy exploitation from depleted high-temperature gas reservoirs by recycling CO_(2): The superiority and existing problems 被引量:8
5
作者 Guodong Cui Shaoran Ren +1 位作者 Bin Dou Fulong Ning 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第6期428-443,共16页
CO_(2) can be used as an alternative injectant to exploit geothermal energy from depleted high-temperature gas reservoirs due to its high mobility and unique thermal properties.However,there has been a lack of systema... CO_(2) can be used as an alternative injectant to exploit geothermal energy from depleted high-temperature gas reservoirs due to its high mobility and unique thermal properties.However,there has been a lack of systematic analysis on the heat mining mechanism and performance of CO_(2),as well as the problems that may occur during geothermal energy exploitation at specific gas reservoir conditions.In this paper,a base numerical simulation model of a typical depleted high-temperature gas reservoir was established to simulate the geothermal energy exploitation processes via recycling CO_(2) and water,with a view to investigate whether and/or at which conditions CO_(2) is more suitable than water for geothermal energy exploitation.The problems that may occur during the CO_(2)-based geothermal energy exploitation were also analyzed along with proposed feasible solutions.The results indicate that,for a depleted low-permeability gas reservoir with dimensions of 1000 m×500 m×50 m and temperature of 150℃ using a single injection-production well group for 40 years of operation,the heat mining rate of CO_(2) can be up to 3.8 MW at a circulation flow rate of 18 kg s^(-1)due to its high mobility along with the flow path in the gas reservoir,while the heat mining rate of water is only about 2 MW due to limitations on the injectivity and mobility.The reservoir physical property and injection-production scheme have some effects on the heat mining rate,but CO_(2)always has better performance than water at most reservoir and operation conditions,even under a high water saturation.The main problems for CO_(2) circulation are wellbore corrosion and salt precipitation that can occur when the reservoir has high water saturation and high salinity,in which serious salt precipitation can reduce formation permeability and result in a decline of CO_(2) heat mining rate (e.g.up to 24%reduction).It is proposed to apply a low-salinity water slug before CO_(2)injection to reduce the damage caused by salt precipitation.For high-permeability gas reservoirs with high water saturation and high salinity,the superiority of CO_(2) as a heat transmission fluid becomes obscure and water injection is recommended. 展开更多
关键词 Depleted high-temperature gas reservoir Heat transmission fluid Geothermal energy exploitation CO_(2) Salt precipitation
下载PDF
Investigation of influence factors on CO_(2) flowback characteristics and optimization of flowback parameters during CO_(2) dry fracturing in tight gas reservoirs
6
作者 Xiao-Mei Zhou Lei Li +4 位作者 Yong-Quan Sun Ran Liu Ying-Chun Guo Yong-Mao Hao Yu-Liang Su 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3553-3566,共14页
CO_(2) dry fracturing is a promising alternative method to water fracturing in tight gas reservoirs,especially in water-scarce areas such as the Loess Plateau.The CO_(2) flowback efficiency is a critical factor that a... CO_(2) dry fracturing is a promising alternative method to water fracturing in tight gas reservoirs,especially in water-scarce areas such as the Loess Plateau.The CO_(2) flowback efficiency is a critical factor that affects the final gas production effect.However,there have been few studies focusing on the flowback characteristics after CO_(2) dry fracturing.In this study,an extensive core-to-field scale study was conducted to investigate CO_(2) flowback characteristics and CH_(4) production behavior.Firstly,to investigate the impact of core properties and production conditions on CO_(2) flowback,a series of laboratory experiments at the core scale were conducted.Then,the key factors affecting the flowback were analyzed using the grey correlation method based on field data.Finally,taking the construction parameters of Well S60 as an example,a dual-permeability model was used to characterize the different seepage fields in the matrix and fracture for tight gas reservoirs.The production parameters after CO_(2) dry fracturing were then optimized.Experimental results demonstrate that CO_(2) dry fracturing is more effective than slickwater fracturing,with a 9.2%increase in CH_(4) recovery.The increase in core permeability plays a positive role in improving CH_(4) production and CO_(2) flowback.The soaking process is mainly affected by CO_(2) diffusion,and the soaking time should be controlled within 12 h.Increasing the flowback pressure gradient results in a significant increase in both CH_(4) recovery and CO_(2) flowback efficiency.While,an increase in CO_(2) injection is not conducive to CH_(4) production and CO_(2) flowback.Based on the experimental and field data,the important factors affecting flowback and production were comprehensively and effectively discussed.The results show that permeability is the most important factor,followed by porosity and effective thickness.Considering flowback efficiency and the influence of proppant reflux,the injection volume should be the minimum volume that meets the requirements for generating fractures.The soaking time should be short which is 1 day in this study,and the optimal bottom hole flowback pressure should be set at 10 MPa.This study aims to improve the understanding of CO_(2) dry fracturing in tight gas reservoirs and provide valuable insights for optimizing the process parameters. 展开更多
关键词 CO_(2)fracturing Tight gas reservoir Fracturing fluid flowback Parameter optimization
下载PDF
Numerical Simulation of Asphaltene Precipitation and Deposition during Natural Gas and CO_(2) Injection
7
作者 Shasha Feng Yi Liao +3 位作者 Weixin Liu Jianwen Dai Mingying Xie Li Li 《Fluid Dynamics & Materials Processing》 EI 2024年第2期275-292,共18页
Asphaltene deposition is a significant problem during gas injection processes,as it can block the porous medium,the wellbore,and the involved facilities,significantly impacting reservoir productivity and ultimate oil re... Asphaltene deposition is a significant problem during gas injection processes,as it can block the porous medium,the wellbore,and the involved facilities,significantly impacting reservoir productivity and ultimate oil recovery.Only a few studies have investigated the numerical modeling of this potential effect in porous media.This study focuses on asphaltene deposition due to natural gas and CO_(2) injection.Predictions of the effect of gas injection on asphaltene deposition behavior have been made using a 3D numerical simulation model.The results indicate that the injection of natural gas exacerbates asphaltene deposition,leading to a significant reduction in permeability near the injection well and throughout the reservoir.This reduction in permeability strongly affects the ability of gas toflow through the reservoir,resulting in an improvement of the displacement front.The displacement effi-ciency of the injection gas process increases by up to 1.40%when gas is injected at 5500 psi,compared to the scenario where the asphaltene model is not considered.CO_(2) injection leads to a miscible process with crude oil,extracting light and intermediate components,which intensifies asphaltene precipitation and increases the viscosity of the remaining crude oil,ultimately reducing the recovery rate. 展开更多
关键词 reservoir simulation asphaltenes deposition natural gas injection CO_(2)injection
下载PDF
Field Scale Simulation Study of Miscible Water Alternating CO<sub>2</sub>Injection Process in Fractured Reservoirs 被引量:1
8
作者 Mohammad Afkhami Karaei Ali Ahmadi +2 位作者 Hooman Fallah Shahrokh Bahrami Kashkooli Jahangir Talebi Bahmanbeglo 《Geomaterials》 2015年第1期25-33,共9页
Vast amounts of world oil reservoirs are in natural fractured reservoirs. There are different methods for increasing recovery from fractured reservoirs. Miscible injection of water alternating CO2?is a good choice amo... Vast amounts of world oil reservoirs are in natural fractured reservoirs. There are different methods for increasing recovery from fractured reservoirs. Miscible injection of water alternating CO2?is a good choice among EOR methods. In this method, water and CO2?slugs are injected alternatively in reservoir as miscible agent into reservoir. This paper studies water injection scenario and miscible injection of water and CO2?in a two dimensional, inhomogeneous fractured reservoir. The results show that miscible water alternating CO2?gas injection leads to 3.95% increase in final oil recovery and total water production decrease of 3.89% comparing to water injection scenario. 展开更多
关键词 Simulation Study co2 WATER ALTERNATING gas Injection Fractured reservoirs
下载PDF
The Application of CO2-EOR in Ultra-Low Permeability Reservoir
9
作者 Bo Chi Min Li Xue Wang Zhaoyong Li Lifang Wu Shuyan Sun Jiankai Wang Yangxin Su Guinan Yang 《Journal of Earth Science and Engineering》 2014年第5期264-270,共7页
CO2 flooding is a process whereby carbon dioxide is injected into an oil reservoir in order to increase output when extracting oil. Since 1952, Wharton obtained the patent concern CO2 flooding, CO2-EOR (CO2 flooding ... CO2 flooding is a process whereby carbon dioxide is injected into an oil reservoir in order to increase output when extracting oil. Since 1952, Wharton obtained the patent concern CO2 flooding, CO2-EOR (CO2 flooding enhance oil recovery) has been one of research hot-spot around the world. According to the statistical data of 2006, there are total of 94 global CO2-EOR projects, including 65 low permeability oilfield projects (79% of the total). Daqing Oilfield is the largest one of China, after more than 50 years of continuous development, oilfield comprehensive water cut has reached over 90%, and the difficulty of oilfield development has been gradually increasing. In recent years, low and ultra-low permeability reservoirs development have played a more and more important role accompany with low permeability reserves in proportion of the total reserves have been increasing year by year. But water-flooding recovery of low permeability reservoir is very low under the influence of reservoir poor properties and heterogeneity. As a kind of greenhouse gas, CO2 flooding can obtain good results for the low permeability reservoir in which the water flooding has proven ineffective. CO2 flooding Pilot Test was conducted under such background since Dec. 2002, over 10 years of practice has proved that CO2 flooding is an effective method to improve the development effect of low permeability reservoir, all experience during the mechanism study and field test should present important references for further larger-scale CO2 flooding projects. 展开更多
关键词 co2-EOR low-permeability reservoir start-up pressure miscible-pressure MMP (minimum miscible pressure) WAG(water alternating gas injection).
下载PDF
Discovery and Significance of High CH_4 Primary Fluid Inclusions in Reservoir Volcanic Rocks of the Songliao Basin,NE China 被引量:14
10
作者 WANG Pujun HOU Qijun +4 位作者 WANG Keyong CHEN Shumin CHENG Rihui LIU Wanzhu LI Quanlin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第1期113-120,共8页
Comparing compositions of the fluid inclusions in volcanic rocks to the contents and isotopes of the gases in corresponding volcanic reservoirs using microthermometry, Raman microspectroscopy and mass spectrum analysi... Comparing compositions of the fluid inclusions in volcanic rocks to the contents and isotopes of the gases in corresponding volcanic reservoirs using microthermometry, Raman microspectroscopy and mass spectrum analysis, we found that: (1) up to 82 mole% methane exists in the primary inclusions hosted in the reservoir volcanic rocks; (2) high CH4 inclusions recognized in the volcanic rocks correspond to CH4-bcaring CO2 reservoirs that are rich in helium and with a high ^3He/^4He ratio and which show reversed order of 813C in alkane; (3) in gas reservoirs of such abiotic methane (〉80%) and a mix of CH4 and CO2, the enclosed content of CH4 in the volcanic inclusions is usually below 42 mole%, and the reversed order of δ^13C in alkane is sometimes irregular in the corresponding gas pools; (4) a glassy inclusion with a homogeneous temperature over 900℃ also contains a small portion of CH4 although predominantly CO2. This affinity between gas pool and content of inclusion in the same volcanic reservoirs demonstrates that magma-originated gases, both CH4 and CO2, have contributed significantly to the corresponding gas pools and that the assumed hydrocarbon budget of the bulk earth might be much larger than conventionally supposed. 展开更多
关键词 Songliao Basin reservoir volcanic rocks fluid inclusions methane (CH4) carbon dioxide co2 abiogenic origin natural gas
下载PDF
Control factors and porosity evolution of high-quality sandstone reservoirs of Kela-2 gas field in Kuqa Depression 被引量:4
11
作者 Jinhua Jia Jiayu Gu 《Chinese Science Bulletin》 SCIE EI CAS 2002年第S1期100-106,共7页
By using the integrated methods includingsandbodies modelling of the outcrops, sedimentary facies ofthe cores and well logs of the drilled wells, and the reservoircorrelation of interwells, it is thought that the sand... By using the integrated methods includingsandbodies modelling of the outcrops, sedimentary facies ofthe cores and well logs of the drilled wells, and the reservoircorrelation of interwells, it is thought that the sandstone res-ervoirs of Kela-2 gas field are a suit of high-quality naturalgas reservoirs with great thickness, extensive and continuousdistribution, high porosity and permeability, and a few bar-rier beds. Sedimentary facies and microfacies are the mainfactors controlling the reservoir distribution and interiorheterogeneity. Based on a great deal of data of rock’s thinsections, porosity, permeability, and the parameters of capil-lary pressure, the reservoir diagenesis, controls, mechanismand evolution of pores have been studied. It is consideredthat compaction in the early stage and diagenetic dolomiteand calcite cements have effect on the decline of reservoirsproperty. Now compaction is chiefly middle to weak. Thebetter reservoirs have no or a few calcite cements. In theearly of deep buried stage, there are still mainly remainderprimary intergranular pores. The authigenic kaolinite ofreservoirs is the production of the dissolution of feldsparsand lithic fragments. The dissolution results in the partlymodified and broadened secondary intergranular pores. Inthe late of deep buried stage, structure fissures and over-pressure were in favor of improving and preservation ofthese pores. 展开更多
关键词 KUQA DEPRESSION Kela-2 gas field HIGH-QUALITY SANDSTONE reservoirs control factors POROSITY permeability.
原文传递
Key Problems and Countermeasures in CO_(2)Flooding and Storage 被引量:1
12
作者 CHEN Huanqing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第3期858-872,共15页
Based on literature research in combination with the practice of CO_(2)flooding and storage in Jilin Oilfield,this study assesses the key problems in CO_(2)flooding and storage,proposing the corresponding countermeasu... Based on literature research in combination with the practice of CO_(2)flooding and storage in Jilin Oilfield,this study assesses the key problems in CO_(2)flooding and storage,proposing the corresponding countermeasures from five aspects of CO_(2)gas source condition,namely geological condition evaluation,scheme design incoordination with other production methods,economic and effectiveness evaluation,together with dynamic monitoring and safety evaluation.The results show that CO_(2)flooding is the most economic and effective CO_(2)storage method.In eastern China,inorganic origin CO_(2)gas reservoirs are widely developed and are especially the most enriched in the Paleozoic carbonate rock strata and the Cenozoic Paleogene–Neogene system,which provide a rich resource base for CO_(2)flooding and storage.In the future,CO_(2)generated in the industrial field will become the main gas source of CO_(2)flooding and storage.The evaluation of geological conditions of oil and gas reservoirs is the basis for the potential evaluation,planning scheme design and implementation of CO_(2)flooding and storage.CO_(2)storage should be below the depth of 800 m,the CO_(2)flooding and storage effects in lowpermeability oil reservoirs being the best.CO_(2)geological storage mechanisms primarily consist of tectonic geological storage,bound gas storage,dissolution storage,mineralization storage,hydrodynamic storage and coalbed adsorption storage.The practice of CO_(2)flooding and storage in Jilin Oilfield demonstratesthat the oil increment by CO_(2)flooding is at least 24%higher than by conventional water flooding.The most critical factor determining the success or failure of CO_(2)flooding and storage is economic effectiveness,which needs to be explored from two aspects:the method and technology innovation along with the carbon peaking and carbon neutrality policy support.After CO_(2)is injected into the reservoir,it will react with the reservoir and fluid,the problem of CO_(2)recovery or overflow will occur,so the dynamic monitoring and safety evaluation of CO_(2)flooding and storage are very important.This study is of great significance to the expansion of the application scope of CO_(2)flooding and storage and future scientific planning and deployment. 展开更多
关键词 CO_(2)flooding and storage CO_(2)gas source low permeability reservoir economic effectiveness dynamic monitoring
下载PDF
CO_(2) storage in depleted gas reservoirs:A study on the effect of residual gas saturation 被引量:2
13
作者 Arshad Raza Raoof Gholami +3 位作者 Reza Rezaee Chua Han Bing Ramasamy Nagarajan Mohamed Ali Hamid 《Petroleum》 2018年第1期95-107,共13页
Depleted gas reservoirs are recognized as the most promising candidate for carbon dioxide storage.Primary gas production followed by injection of carbon dioxide after depletion is the strategy adopted for secondary ga... Depleted gas reservoirs are recognized as the most promising candidate for carbon dioxide storage.Primary gas production followed by injection of carbon dioxide after depletion is the strategy adopted for secondary gas recovery and storage practices.This strategy,however,depends on the injection strategy,reservoir characteristics and operational parameters.There have been many studies to-date discussing critical factors influencing the storage performance in depleted gas reservoirs while little attention was given to the effect of residual gas.In this paper,an attempt was made to highlight the importance of residual gas on the capacity,injectivity,reservoir pressurization,and trapping mechanisms of storage sites through the use of numerical simulation.The results obtained indicated that the storage performance is proportionally linked to the amount of residual gas in the medium and reservoirs with low residual fluids are a better choice for storage purposes.Therefore,it would be wise to perform the secondary recovery before storage in order to have the least amount of residual gas in the medium.Although the results of this study are useful to screen depleted gas reservoirs for the storage purpose,more studies are required to confirm the finding presented in this paper. 展开更多
关键词 CO_(2)storage Dry gas reservoir Long term reservoir simulation Residual gas saturation
原文传递
Nitrogen enhanced drainage of CO2 rich coal seams for mining
14
作者 Luke D.Connell Regina Sander +3 位作者 Michael Camilleri Deasy Heryanto Zhejun Pan Nicholas Lupton 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第5期755-761,共7页
Coal seams with high CO_2 gas contents can be difficult to drain gas for outburst management. Coal has a high affinity for CO_2 with adsorption capacities typically twice that of CH_4. This paper presents an analysis ... Coal seams with high CO_2 gas contents can be difficult to drain gas for outburst management. Coal has a high affinity for CO_2 with adsorption capacities typically twice that of CH_4. This paper presents an analysis of nitrogen injection into coal to enhance drainage of high CO_2 gas contents. Core flooding experiments were conducted where nitrogen was injected into coal core samples from two Australian coal mining basins with initial CO_2 gas contents and pressures that could be encountered during underground mining. Nitrogen effectively displaced the CO_2 with mass balance analysis finding there was only approximately 6%–7% of the original CO_2 gas content residual at the end of the core flood. Using a modified version of the SIMED II reservoir simulator, the core flooding experiments were history matched to determine the nitrogen and methane sorption times. It was found that a triple porosity model(a simple extension of the Warren and Root dual porosity model) was required to accurately describe the core flood observations. The estimated model properties were then used in reservoir simulation studies comparing enhanced drainage with conventional drainage with underground in seam boreholes. For the cases considered, underground in seam boreholes were found to provide shorter drainage lead times than enhanced drainage to meet a safe gas content for outburst management. 展开更多
关键词 gas drainage High co2 ECBM reservoir simulation
下载PDF
Origin,migration,and accumulation of carbon dioxide in the East Changde Gas Field,Songliao Basin,northeastern China
15
作者 Yu-Ming Liu Yue Dong +3 位作者 Zhen-Hua Rui Xue-Song Lu Xin-Mao Zhou Li-Chun Wei 《Petroleum Science》 SCIE CAS CSCD 2018年第4期695-708,共14页
CO2reservoirs are widely distributed within the Yingcheng Formation in the Songliao Basin, but the extreme horizontal heterogeneity of CO2content causes difficulties in the exploration and exploitation of methane. For... CO2reservoirs are widely distributed within the Yingcheng Formation in the Songliao Basin, but the extreme horizontal heterogeneity of CO2content causes difficulties in the exploration and exploitation of methane. Former studies have fully covered the lithology, structure, and distribution of the reservoirs high in CO2content, but few are reported about migration and accumulation of CO2. Using the East Changde Gas Field as an example, we studied the accumulation mechanisms of CO2 gas. Two original types of accumulation model are proposed in this study. The fault-controlled accumulation model refers to gas accumulation in the reservoir body that is cut by a basement fault(the West Xu Fault), allowing the hydrocarbon gas generated in the lower formation to migrate into the reservoir body through the fault, which results in a relatively lower CO2content. The volcanic conduit-controlled accumulation model refers to a reservoir body that is not cut by the basement fault, which prevents the hydrocarbon gas from being mixed in and leads to higher CO2contents. This conclusion provides useful theories for prediction of CO2distribution in similar basins and reservoirs. 展开更多
关键词 Carbon dioxide reservoir Mantle-derived co2 Faults reservoir formation mechanism East Changde gas Field Songliao Basin
下载PDF
Experimental investigation of gaseous solvent huff-n-puff in the Middle Bakken Formation
16
作者 Samuel Asante Afari Kegang Ling +2 位作者 Demetrius Maxey Billel Sennaoui Jerjes Hurtado Porlles 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3488-3497,共10页
The efficacy of gaseous solvents in enhancing oil recovery(EOR)in unconventional reservoirs and the influence of operational and design parameters are still debated among the oil recovery research community.This work ... The efficacy of gaseous solvents in enhancing oil recovery(EOR)in unconventional reservoirs and the influence of operational and design parameters are still debated among the oil recovery research community.This work investigated the recovery-enhancing capabilities of two potent gaseous solvents,CO_(2) and ethane,in tight core samples.Laboratory huff-n-puff(H-n-P)experiments were conducted under three miscibility conditions to investigate the influence of the key operating parameters and the dependency of their impact on the miscibility conditions and gas composition.The results show that oil recovery increased with increasing pressure from below(BM)to above(AM)miscibility pressure in a non-linear trend,irrespective of the gas composition.Furthermore,the influence of the soak period was noticeably dependent on the miscibility condition,specifically more remarkable under AM conditions and less apparent under BM conditions.Likewise,the effect of the production period was more pronounced at AM conditions for both gases.Finally,the impact of rock surface area-to-volume(SA/V)was only observed at BM,where both gases recovered more oil in the core samples with high SA/V.In general,ethane showed a higher efficacy for oil recovery than CO_(2);CO_(2) recovered 21%–70%of oil in small core samples,while ethane could recover 32%–88%.The highest recovery was achieved with ethane injected under AM conditions,with a prolonged soak time,a short production period and into a core sample with a high SA/V.We believe the findings from this work will help better understand and design H-n-P EOR projects. 展开更多
关键词 Unconventional reservoirs Huff-n-puff gas solvent ETHANE CO_(2)miscibility
下载PDF
Low-field NMR application in the characterization of CO_(2)geological storage and utilization related to shale gas reservoirs:a brief review
17
作者 Zhaohui LU Ke LI +2 位作者 Xingbing LIU Peng ZHAO Jun LIU 《Frontiers of Earth Science》 SCIE CSCD 2023年第3期739-751,共13页
CO_(2)geological storage and utilization(CGSU)is considered a far-reaching technique to meet the demand of increasing energy supply and decreasing CO_(2)emissions.For CGSUs related to shale gas reservoirs,experimental... CO_(2)geological storage and utilization(CGSU)is considered a far-reaching technique to meet the demand of increasing energy supply and decreasing CO_(2)emissions.For CGSUs related to shale gas reservoirs,experimental investigations have attracted variable methodologies,among which low-field NMR(LF-NMR)is a promising method and is playing an increasingly key role in reservoir characterization.Herein,the application of this nondestructive,sensitive,and quick LF-NMR technique in characterizing CGSU behavior in shale gas reservoirs is reviewed.First,the basic principle of LF-NMR for 1H-fluid detection is introduced,which is the theoretical foundation of the reviewed achievements in this paper.Then,the reviewed works are related to the LF-NMR-based measurements of CH_(4)adsorption capacity and the CO_(2)-CH_(4)interaction in shale,as well as the performance on CO_(2)sequestration and simultaneous enhanced gas recovery from shale.Basically,the reviewed achievements have exhibited a large potential for LF-NMR application in CGSUs related to shale gas reservoirs,although some limitations and deficiencies still need to be improved.Accordingly,some suggestions are proposed for a more responsible development of the LF-NMR technique.Hopefully,this review is helpful in promoting the expanding application of the LF-NMR technique in CGSU implementation in shale gas reservoirs. 展开更多
关键词 CO_(2)/CH_(4)competitive adsorption shale gas reservoir CO_(2)geological storage gas recovery enhancement low-field NMR
原文传递
Gas accumulation mechanism in Denglouku Formation of Changling fault depression, southern Songliao Basin, China
18
作者 YANG Guang FAN Yeyu LIU Changli 《Global Geology》 2017年第3期170-175,共6页
The Changling gas field is occurs in tight sandstone reservoirs of the Lower Cretaceous Denglouku Formation in the Changling fault depression,southern Songliao Basin,China,which constitutes a new gas-producing area in... The Changling gas field is occurs in tight sandstone reservoirs of the Lower Cretaceous Denglouku Formation in the Changling fault depression,southern Songliao Basin,China,which constitutes a new gas-producing area in the depression. Using information on the source-reservoir-cap rock assemblage of the Denglouku Formation,fault activity,and single well burial history of well CS1,together with data on reservoir fluid inclusion and laser Raman spectroscopy,we described the formation of the Changling gas field and determine that this fault depression did not possess suitable conditions for hydrocarbon generation. Coal-derived methane generated from underlying hydrocarbon source rock accumulated in the Lower Cretaceous Yingcheng Formation. At the end of the Late Cretaceous Qingshankou Stage,underwater volcanic eruptions occurred in the northern part of the Changling gas field near Qian'an,resulting in the reactivation of deep faults. Mantle-sourced inorganic CO2 migrated along faults to hydrocarbon gas reservoirs in volcanic rocks of the Yingcheng Formation; Meanwhile,displaced methane( hydrocarbon gas) migrated upward to sand reservoirs of the Denglouku Formation.The methane accumulated and formed secondary gas reservoirs,Therefore fault activity was the main factor controlling the generation of gas reservoirs in the Denglouku Formation. The main accumulation period of the Yingcheng hydrocarbon gas reservoirs was 82 Ma. Whereas gas reservoir formation in the overlying Denglongku Formation was 79 Ma,slightly later than the time of formation of the Yingcheng gas reservoir in CS1 well area.At 79 Ma,the burial depth of the Denglouku Formation was 1 800--2 000 m,the diagenesis is relatively weak and the physical properties of the reservoir are relatively favorable for accumulation. This period is not only at gas generation peak time of three sets of source rock but also at the reactivation of deep faults during the formation of fault-bound depressions,thereby providing favorable conditions for the migration and accumulation of methane. 展开更多
关键词 Changling gas field volcanic reservoir Denglouku Formation inorganic co2 replacement effect
下载PDF
Methane-rich fluid inclusions and their hosting volcanic reservoir rocks of the Songliao Basin, NE China
19
作者 WANGPu-Jun HOUQi-jun +3 位作者 CHENGRi-hui LIQuan-lin GUOZhen-hua HUANGYu-long 《Journal of Geoscientific Research in Northeast Asia》 2004年第2期136-142,共7页
Methane-rich fluids were recognized to be hosted in the reservoir volcanic rocks as primary inclusions. Samples were collected from core-drillings of volcanic gas reservoirs with reversed δ13C of alkane in the Xujiaw... Methane-rich fluids were recognized to be hosted in the reservoir volcanic rocks as primary inclusions. Samples were collected from core-drillings of volcanic gas reservoirs with reversed δ13C of alkane in the Xujiaweizi depression of the Songliao Basin. The volcanic rocks are rhyolite dominant being enriched in the more incompatible elements like Cs, Rb, Ba, Th, U and Th with relative high LREE, depleted HREE and negative anomalies of Ti and Nb, suggesting a melt involving both in mantle source and crustal assimilation. Primary fluids hosted in the volcanic rocks should have the same provenance with the magma. The authors concluded that the enclosed CH4 in the volcanics are mantle/magma-derived alkane and the reversed δ13C of alkane in the corresponding gas reservoirs is partly resulted from mixture between biogenic and abiogenic gases. 展开更多
关键词 Songliao Basin reservoir volcanic rocks primary fluid inclusion CH4 and co2 abiogenic origin natural gas
下载PDF
Will the future of shale reservoirs lie in CO2 geological sequestration? 被引量:2
20
作者 ZHAN Jie CHEN ZhangXin +2 位作者 ZHANG Ying ZHENG ZiGang DENG Qi 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第7期1154-1163,共10页
CO2 geological sequestration in a depleted shale gas reservoir is a promising method to address the global energy crisis as well as to reduce greenhouse gas emissions. Though improvements have been achieved by many re... CO2 geological sequestration in a depleted shale gas reservoir is a promising method to address the global energy crisis as well as to reduce greenhouse gas emissions. Though improvements have been achieved by many researchers, the carbon sequestration and enhanced gas recovery(CS-EGR) in shale formations is still in a preliminary stage. The current research status of CO2 sequestration in shale gas reservoirs with potential EGR is systematically and critically addressed in the paper. In addition, some original findings are also presented in this paper. This paper will shed light on the technology development that addresses the dual problem of energy crisis and environmental degradation. 展开更多
关键词 shale gas reservoir co2 sequestration EGR indexes criteria for prescreening sorption
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部