期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
Detection of phthalates migration from disposable tablewares to drinking water using hexafluoroisopropanol-induced catanionic surfactant coacervate extraction 被引量:5
1
作者 Cao Li Jia Xu +1 位作者 Dan Chen Yuxiu Xiao 《Journal of Pharmaceutical Analysis》 SCIE CAS 2016年第5期292-299,共8页
Hexafluoroisopropanol(HFIP)-induced sodium dodecyl sulfate/dodecyltrimethylammonium bromide(SDS/DTAB) catanionic surfactant coacervate extraction method coupled with high performance liquid chromatography(HPLC) was us... Hexafluoroisopropanol(HFIP)-induced sodium dodecyl sulfate/dodecyltrimethylammonium bromide(SDS/DTAB) catanionic surfactant coacervate extraction method coupled with high performance liquid chromatography(HPLC) was used to detect the migration of phthalates from disposable tablewares to drinking water. The concentration factors are larger than 82 and extraction recoveries over 53% for water samples spiked with 100 or 200 ng/m L phthalates. Limit of detection is in the range of 1.0–2.6 ng/m L.Good linearity with correlation coefficients larger than 0.9985 is obtained in the concentration of20–1500 or 40–3000 ng/m L. Relative recoveries are from 82.4% to 123.6% for water samples spiked with30/60, 250/500, and 1500/3000 ng/m L phthalates, respectively. Relative standard deviations(RSDs) are0.4%–7.4% for intraday precision(n = 5) and 0.6%–7.8% for interday precision(n = 3). Four of studied phthalates are found in the drinking water samples prepared from four kinds of tablewares. 展开更多
关键词 PHTHALATES MIGRATION DISPOSABLE tableware HFIP-induced SDS/DTAB coacervate EXTRACTION HPLC
下载PDF
Coacervate Structures of CdI_2 Thin Film Grown during Phase Transformation
2
作者 Xiaoyan YE and Lili CAO(Dept. of Chemistry, Tsinghua University, Beijing 100084, China)Jizhong ZHANG and Hengde LI(Dept. of Materials Scieuce & Engineering, Tsinghua University, Beijing 100084, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1997年第4期296-298,共3页
The microstructure of CdI2 thin film grown during vapor-phase deposition was investigated by scanning electron microscopy (SEM). The thin film deposited on Si crystal consists of numerous sunflower-like aggregates. Th... The microstructure of CdI2 thin film grown during vapor-phase deposition was investigated by scanning electron microscopy (SEM). The thin film deposited on Si crystal consists of numerous sunflower-like aggregates. These aggregates display well self-assembly characteristics. The size of Sunflower-like aggregates is between 12 and 44 μm. Each sunflower-like aggregate is surrounded with many adjacent wings-'petals'. The structure of central region of the 'sunflower' is obviously difFerent from that of the 'petal'. Electron spectroscopy for chemical analysis (ESCA) was employed in determining the chemical valence of the thin film. Self-organization efFect is used to explain the coring growth process of CdI2 thin film 展开更多
关键词 Thin coacervate Structures of CdI2 Thin Film Grown during Phase Transformation
下载PDF
Complex coacervate-derived hydrogel with asymmetric and reversible wet bioadhesion for preventing UV light-induced morbidities
3
作者 Xin Peng Yuan Li +6 位作者 Menghui Liu Zhuo Li Xuemei Wang Kunyu Zhang Xin Zhao Gang Li Liming Bian 《Bioactive Materials》 SCIE CSCD 2023年第12期62-72,共11页
Protecting the skin from UV light irradiation in wet and underwater environments is challenging due to the weak adhesion of existing sunscreen materials but highly desired.Herein we report a polyethyleneimine/thioctic... Protecting the skin from UV light irradiation in wet and underwater environments is challenging due to the weak adhesion of existing sunscreen materials but highly desired.Herein we report a polyethyleneimine/thioctic acid/titanium dioxide(PEI/TA/TiO_(2))coacervate-derived hydrogel with robust,asymmetric,and reversible wet bioadhesion and effective UV-light-shielding ability.The PEI/TA/TiO_(2)complex coacervate can be easily obtained by mixing a PEI solution and TA/TiO_(2)powder.The fluid PEI/TA/TiO_(2)coacervate deposited on wet skin can spread into surface irregularities and subsequently transform into a hydrogel with increased cohesion,thereby establishing interdigitated contact and adhesion between the bottom surface and skin.Meanwhile,the functional groups between the skin and hydrogel can form physical interactions to further enhance bioadhesion,whereas the limited movement of amine and carboxyl groups on the top hydrogel surface leads to low adhesion.Therefore,the coacervate-derived hydrogel exhibits asymmetric adhesiveness on the bottom and top surfaces.Moreover,the PEI/TA/TiO_(2)hydrogel formed on the skin could be easily removed using a NaHCO3 aqueous solution without inflicting damage.More importantly,the PEI/TA/TiO_(2)hydrogel can function as an effective sunscreen to block UV light and prevent UV-induced MMP-9 overexpression,inflammation,and DNA damage in animal skin.The advantages of PEI/TA/TiO_(2)coacervate-derived hydrogels include robust,asymmetric,and reversible wet bioadhesion,effective UV light-shielding ability,excellent biocompatibility,and easy preparation and usage,making them a promising bioadhesive to protect the skin from UV light-associated damage in wet and underwater environments. 展开更多
关键词 Adhesive hydrogel coacervate Asymmetric adhesion Reversible adhesion
原文传递
The correlation between thermally induced precipitateto-coacervate transition and glass transition in a polyelectrolyte-bolaamphiphile complex
4
作者 Xiaoqing Liu Zhihui Shi +3 位作者 Feng Yu Chao Teng Chen Zhang Zhong-Ren Chen 《Aggregate》 2023年第5期189-198,共10页
The precipitate and the coacervate are two aggregated states in the polyelectrolyte complexes(PECs).The precipitate-to-coacervate transition and glass transition in PECs have been widely reported in the past.In many c... The precipitate and the coacervate are two aggregated states in the polyelectrolyte complexes(PECs).The precipitate-to-coacervate transition and glass transition in PECs have been widely reported in the past.In many cases,the two phenomena are studied independently,although both of them are apparently affected by water and small ions.Here,utilizing a PEC system consisting of poly(acrylic acid)(PAA)and a cationic bolaamphiphile(DBON),we explore the states of PECs as a function of salt,temperature,and the molecular weight of PAAs.By a combination of microscopic observation,time-resolved fluorescence measurements,and differential scanning calorimetry,we identify salt/temperature driven precipitate-to-coacervate transitions of the complexes.The thermally induced morphology transformation from the precipitate to coacervate occurs around the glass transition temperature,indicating a strong correlation between the two processes.As the molecular weight of the PAA increases,the thermal transition temperature becomes higher.This finding offers new insights on the mechanistic interactions that dictate the aggregated states of PECs.Based on the photothermal effect of DBON,we also develop a UV light-induced strategy to mediate the precipitate-to-coacervate transition,providing a fantastic platform to create functional PEC materials. 展开更多
关键词 aggregation-induced emission coacervate glass transition polyelectrolyte complex PRECIPITATE
原文传递
Myocardial protection by heparin-based coacervate of FGF10 被引量:2
5
作者 Zhouguang Wang Yan Huang +5 位作者 Yan He Sinan Khor Xingxing Zhong Jian Xiao Qingsong Ye Xiaokun Li 《Bioactive Materials》 SCIE 2021年第7期1867-1877,共11页
Heart disease is still the leading killer all around the world,and its incidence is expected to increase over the next decade.Previous reports have already shown the role of fibroblast growth factor10(FGF10)in allevia... Heart disease is still the leading killer all around the world,and its incidence is expected to increase over the next decade.Previous reports have already shown the role of fibroblast growth factor10(FGF10)in alleviating heart diseases.However,FGF10 has not been used to treat heart diseases because the free protein has short half-life and low bioactivity.Here,an injectable coacervate was designed to protect growth factor from degradation during delivery and the effects of the FGF10 coacervate were studied using a mice acute myocardial infarction(MI)model.As shown in our echocardiographic results,a single injection of FGF10 coacervate effectively inhibited preserved cardiac contractibility and ventricular dilation when compared with free FGF10 and the saline treatment 6 weeks after MI.It is revealed in histological results that the MI induced myocardial inflammation and fibrosis was reduced after FGF10 coacervate treatment.Furthermore,FGF10 coacervate treatment could improve arterioles and capillaries stabilization through increasing the proliferation of endothelial and mural cells.However,with the same dosage,no statistically significant difference was shown between free FGF10,heparin+FGF10 and saline treatment,especially in long term.On another hand,FGF10 coacervate also increased the expression of cardiac-associated the mRNA(cTnT,Cx43 and α-SMA),angiogenic factors(Ang-1 and VEGFA)and decreased the level of inflammatory factor(tumor necrosis factor-α).The downstream signaling of the FGF10 was also investigated,with the western blot results showing that FGF10 coacervate activated the p-FGFR,PI3K/Akt and ERK1/2 pathways to a more proper level than free FGF10 or heparin+FGF10.In general,it is revealed in this research that one-time injection of FGF10 coacervate sufficiently attenuated MI induced injury when compared with an equal dose of free FGF10 or heparin+FGF10 injection. 展开更多
关键词 Fibroblast growth factor-10 ANGIOGENESIS Controlled release Myocardial infarction coacervate
原文传递
A Multiresponsive Transformation between Surfactant-Based Coacervates and Vesicles
6
作者 Lili Zhou Yaxun Fan +3 位作者 Zhang Liu Lina Chen Evan Spruijt Yilin Wang 《CCS Chemistry》 CAS 2021年第12期358-366,共9页
Low-molecular weight surfactants have significant potential as building blocks for prebiotic organization.However,reports about surfactant-based coacervates as protocell models capable of reversible transformation are... Low-molecular weight surfactants have significant potential as building blocks for prebiotic organization.However,reports about surfactant-based coacervates as protocell models capable of reversible transformation are scarce.Herein,we develop a simple system made of a surfactant(-)-N-dodecylN-methylephedrinium bromide(DMEB)and inorganic salts that is capable of spontaneous formation of vesicles,coacervates,and the reversible transformation between the two states. 展开更多
关键词 coacervates SEQUESTRATION MICROREACTORS reversible transformation vesicles
原文传递
Bio-inspired functional coacervates
7
作者 Shujun Chen Qi Guo Jing Yu 《Aggregate》 2022年第6期86-98,共13页
Many functional coacervates have been identified in biological systems,which have attracted widespread interest.Coacervation is a liquid–liquid phase separation(LLPS)process in which a macromolecule-enriched liquid p... Many functional coacervates have been identified in biological systems,which have attracted widespread interest.Coacervation is a liquid–liquid phase separation(LLPS)process in which a macromolecule-enriched liquid phase is formed together with a macromolecule-depleted phase.Bio-inspired coacervates possess excellent features such as underwater delivery,low interface energy,shear thinning,and excellent biocompatibility.They also serve as good delivery platforms for different types of molecules.In this review,we briefly discuss some important extracellular coacervate systems,including mussel adhesives,sandcastle worm glue,squid beak,and tropoelastin.We then provide an overview of the recent development of bio-inspired functional coacervates for various biomedical applications,including medical adhesives,drug delivery,and tissue engineering.Bio-inspired functional coacervates offer a promising material platform for developing new materials for biomedical applications. 展开更多
关键词 bio-inspired materials coacervates phase separation
原文传递
用于实时皮肤创面愈合的超强工程化蛋白凝聚体黏合剂
8
作者 Ming Li Baimei Liu +8 位作者 Wei Xu Lai Zhao Zili Wang Haonan He Jingjing Li Fan Wang Chao Ma Kai Liu Hongjie Zhang 《Engineering》 SCIE EI CAS CSCD 2023年第12期76-85,共10页
Adhesives have attracted a great deal of attention as an advanced modality in biomedical engineering because of their unique wound management behavior.However,it is a grand challenge for current adhesive systems to ac... Adhesives have attracted a great deal of attention as an advanced modality in biomedical engineering because of their unique wound management behavior.However,it is a grand challenge for current adhesive systems to achieve robust adhesion due to their tenuous interfacial bonding strength.Moreover,the absence of dynamic adaptability in conventional chemical adhesives restricts neoblasts around the wound from migrating to the site,resulting in an inferior tissue-regeneration effect.Herein,an extracellular matrix-derived biocomposite adhesive with robust adhesion and a real-time skin healing effect is well-engineered.Liquid–liquid phase separation is well-harnessed to drive the assembly of the biocomposite adhesive,with the active involvement of supramolecular interactions between chimeric protein and natural DNA,leading to a robustly reinforced adhesion performance.The bioadhesive exhibits outstanding adhesion and sealing behaviors,with a sheared adhesion strength of approximately 18 MPa,outperforming its reported counterparts.Moreover,the engineered bioderived components endow this adhesive material with biocompatibility and exceptional biological functions including the promotion of cell proliferation and migration,such that the use of this material eventually yields real-time in situ skin regeneration.This work opens up novel avenues for functionalized bioadhesive engineering and biomedical translations. 展开更多
关键词 Biocomposite adhesive Protein DNA coacervates Skin healing
下载PDF
Potentialities of the Poly(Aminoethyl Methacrylate) p(AMA) as Gelatin-Like Polymer in Complex Coacervation 被引量:1
9
作者 Nicolas Esselin Frédérique Portolan +3 位作者 Nouha Domloge David Rees Osama M. Musa Jean-François Pilard 《Journal of Encapsulation and Adsorption Sciences》 2016年第4期147-160,共14页
In order to overcome all encapsulation variations during a complex coacervation process, the replacement of gelatin cationic polymer has been performed using p(AMA). The synthesis of p(AMA) was realized through a rand... In order to overcome all encapsulation variations during a complex coacervation process, the replacement of gelatin cationic polymer has been performed using p(AMA). The synthesis of p(AMA) was realized through a random radical methodology. Under these conditions a polymer with 18,600 g/mol was found appropriate for optimal capsule yield and physico-chemical properties. Turbidity measurements performed during the coacervation reactions with different ratios of both CMC and p(AMA) allowed optimizing coacervation conditions. Coacervates characterizations particularly demonstrate the stability of the capsules exhibiting a break strength over 3 N/m<sup>2</sup>. 展开更多
关键词 p(AMA) Complex Coacervation ENCAPSULATION POLYMERIZATION
下载PDF
Preparations and Properties of Perfume Microcapsules
10
作者 邹黎明 《Journal of China Textile University(English Edition)》 EI CAS 2000年第1期18-21,共4页
With Perfume as core and gelatin-gum arabic as mem-brane,a series of microcapsules were prepared by meansof complex coacervation at various technical conditions.Their interior and outer diameters and membrane thick-ne... With Perfume as core and gelatin-gum arabic as mem-brane,a series of microcapsules were prepared by meansof complex coacervation at various technical conditions.Their interior and outer diameters and membrane thick-nesses were measured and the effects of preparation tech-niques on microcapsule properties were revealed. 展开更多
关键词 MICROCAPSULE PERFUME MEMBRANE thickness COMPLEX COACERVATION
下载PDF
Preparation of Microcapsules and Half Life of the Kiwi Fruit Seed Oil by Complex Coacervation
11
作者 Zhi Zhang Mengting Pan Dongmin Liu 《American Journal of Plant Sciences》 2017年第2期191-200,共10页
The experiment adopts complex coacervation to prepare microcapsules. Through the experimental comparison, soybean protein isolated-maltodextrin is determined as the wall material for the experimental preparation of th... The experiment adopts complex coacervation to prepare microcapsules. Through the experimental comparison, soybean protein isolated-maltodextrin is determined as the wall material for the experimental preparation of the microcapsules of kiwi fruit seed oil. This paper researched the effects of wall material concentration, core wall ratio and other factors on complex coacervation of kiwi fruit seed oil microcapsules embedding rate, determining that the best wall material concentration is 1%, core wall ratio is 1:1, and the optimum pH ratio is 3.0, temperature is 40&deg;C, and the optimum curing time is 6 hours. The experiment carried out half life research on the microcapsules prepared by the complex coacervation of kiwi fruit seed oil microcapsule. By calculation: the degradation rate constant of kiwi fruit seed oil microcapsules prepared by complex coacervation is 2.793. According to the regression equation it can calculate the half life of kiwi fruit seed oil microcapsules is 18.58 months, about a year and a half. 展开更多
关键词 KIWI FRUIT SEED Oil MICROCAPSULE Complex COACERVATION Half Life
下载PDF
Whey Protein-Carboxymethylcellulose Obtained by Complex Coacervation as an Ingredient in Probiotic Fermented Milk
12
作者 Maria Elisa Caetano-Silva Caroline Dá +4 位作者 rio Capitani Adriane Elisabete Costa Antunes Erna Vougt Vera Sonia Nunes da Silva Maria Teresa Bertoldo Pacheco 《Food and Nutrition Sciences》 2015年第6期571-580,共10页
Discharge of whey proteins is still a current practice by small cheese producers. The development of low-cost alternatives for recovery of these proteins is fundamental for small producers who cannot apply expensive t... Discharge of whey proteins is still a current practice by small cheese producers. The development of low-cost alternatives for recovery of these proteins is fundamental for small producers who cannot apply expensive techniques. The present study investigated the complex coacervation technique as a cheap technology to recover proteins from sweet whey using carboxymethylcellulose, and the coacervate used as an ingredient in the formulation of probiotic fermented milk. The nutritional properties of whey-carboxymethylcellulose coacervates (WP-CMC) were evaluated in trials with animals (rats) using casein as a reference. All these parameters—the coefficient of feed efficiency (CEA), protein digestibility-corrected amino acid score (PDCAAS), and net protein ratio (NPR), as well as weight gain—were determined to evaluate protein quality. A sensory acceptance test was applied to evaluate the sensory characteristics of the product. The complex coacervation technique recovered 86% of the protein from sweet whey. No significant (p > 0.05) differences were observed in the biological tests for both groups (WP-CMC and Casein groups) when NPR (4.98 to 5.04), digestibility (92.35 to 90.64), and CEA (0.40 to 0.42) were evaluated. Probiotic fermented milk beverage containing WP-CMC (0.78%) and guar gum (0.68%) presented good acceptability as determined by sensory evaluation. WP-CMC can be considered an ingredient with high nutritional and biological value that could be applied in probiotic fermented milk as an alternative to small producers to allocate the residual whey from cheese manufacture. 展开更多
关键词 NUTRITIONAL Value WHEY Proteins Complex COACERVATION Probiotic FERMENTED Milk Environmental Impact
下载PDF
Coacervation Microencapsulation of CaCO<sub>3</sub>Particles with a Fluoropolymer by Pressure-induced Phase Separation of Supercritical Carbon Dioxide Solutions
13
作者 Kenji Mishima Haruo Yokota +5 位作者 Takafumi Kato Tadashi Suetsugu Xiuqin Wei Keiichi Irie Kenichi Mishima Michihiro Fujiwara 《Advances in Materials Physics and Chemistry》 2012年第4期181-184,共4页
We report a method for the coacervation micro-encapsulation of several forms of CaCO3 microparticles with the fluoropolymer poly(heptadecafluorodecyl acrylate) (poly (HDFDA)) by pressure-induced phase separation of a ... We report a method for the coacervation micro-encapsulation of several forms of CaCO3 microparticles with the fluoropolymer poly(heptadecafluorodecyl acrylate) (poly (HDFDA)) by pressure-induced phase separation of a supercritical CO2 solution.? A suspension of CaCO3 in CO2 and dissolved poly(HDFDA) were mixed in supercritical CO2.? After the system pressure was slowly decreased to atmospheric pressure, the microcapsules were obtained.? Coacervation was achieved by the precipitation of poly(HDFDA) during the decrease in the pressure of CO2;the solubility of poly(HDFDA) in CO2 decreased with the pressure.? The structure and morphology of the microparticles were investigated by using a scanning electron microscope (SEM) and an electron probe microanalyzer (EPMA) equipped with a wavelength dispersive X-ray spectroscope (WDX). 展开更多
关键词 Component Supercritical Carbon Dioxide MICROENCAPSULATION COACERVATION FLUOROPOLYMER Calcium Carbonate
下载PDF
New insights into protein–polysaccharide complex coacervation:Dynamics,molecular parameters,and applications
14
作者 Jiabao Zheng Paul Van der Meeren Weizheng Sun 《Aggregate》 EI CAS 2024年第1期148-166,共19页
For more than a decade,the discovery of liquid–liquid phase separation within living organisms has prompted colloid scientists to understand the connection between coacervate functionality,phase behavior,and dynamics... For more than a decade,the discovery of liquid–liquid phase separation within living organisms has prompted colloid scientists to understand the connection between coacervate functionality,phase behavior,and dynamics at a multidisciplinary level.Although the protein–polysaccharide was the first system in which the coacervation phenomenon was discovered and is widely used in food systems,the phase state and relaxation dynamics of protein–polysaccharide complex coacervates(PPCC)have rarely been discussed previously.Consequently,this review aims to unravel the relationship between PPCC dynamics,thermodynamics,molecular architecture,applications,and phase states in past studies.Looking ahead,solving the way molecular architecture spreads to macro-functionality,that is,establishing the relationship between molecular architecture–dynamics–application,will catalyze novel advancements in PPCC research within the field of foods and biomaterials. 展开更多
关键词 DYNAMICS ENCAPSULATION liquid coacervate protein-polysaccharide complex coacervation solid precipitate
原文传递
The physiological polyphosphate as a healing biomaterial for chronic wounds:Crucial roles of its antibacterial and unique metabolic energy supplying properties
15
作者 Werner E.G.Müller Hadrian Schepler +6 位作者 Meik Neufurth Shunfeng Wang Veronica Ferrucci Massimo Zollo Rongwei Tan Heinz C.Schröder Xiaohong Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第4期170-185,共16页
Insufficient metabolic energy,in the form of adenosine triphosphate(ATP),and bacterial infections are among the main causes for the development of chronic wounds.Previously we showed that the physi-ological inorganic ... Insufficient metabolic energy,in the form of adenosine triphosphate(ATP),and bacterial infections are among the main causes for the development of chronic wounds.Previously we showed that the physi-ological inorganic polymer polyphosphate(polyP)massively accelerates wound healing both in animals(diabetic mice)and,when incorporated into mats,in patients with chronic wounds.Here,we focused on a hydrogel-based gel formulation,supplemented with both soluble sodium polyP(Na-polyP)and amor-phous calcium polyP nanoparticles(Ca-polyP-NP).Exposure of human epidermal keratinocytes to the gel caused a significant increase in extracellular ATP level,an effect that was even enhanced when Na-polyP was combined with Ca-polyP-NP.Furthermore,it is shown that the added polyP in the gel is converted into a coacervate,leading to encapsulation and killing of bacteria.The data on human chronic wounds showed that the administration of hydrogel leads to the complete closure of these wounds.Histological analysis of biopsies showed an increased granulation of the wounds and an enhanced microvessel forma-tion.The results indicate that the polyP hydrogel,due to its properties to entrap bacteria and generate metabolic energy,is a very promising formulation for a new therapy for chronic wounds. 展开更多
关键词 Inorganic polyphosphate Nanoparticles Hydrogel coacervate Human chronic wounds Antibacterial activity Metabolic energy
原文传递
Phase-separated bienzyme compartmentalization as artificial intracellular membraneless organelles for cell repair
16
作者 Yanwen Zhang Shixin Wang +6 位作者 Yuling Yan Xiaoxiao He Zefeng Wang Shaohong Zhou Xiaohai Yang Kemin Wang Jianbo Liu 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第3期845-852,共8页
Implanting artificial organelles in living cells is capable of correcting cellular dysfunctionalities for cell repair and biomedical applications. In this work, phase-separated bienzyme-loaded coacervate microdroplets... Implanting artificial organelles in living cells is capable of correcting cellular dysfunctionalities for cell repair and biomedical applications. In this work, phase-separated bienzyme-loaded coacervate microdroplets are established as a model of artificial membraneless organelles in endothelial dysfunctional cells for the cascade enzymatic production of nitric oxide(NO) with a purpose of correcting cellular NO deficiency. We prepared the coacervate microdroplets via liquid-liquid phase separation of oppositely charged polyelectrolytes, in which glucose oxidase/horseradish peroxidase-mediated cascade reaction was compartmented. After the coacervate microdroplets were implanted in NO-deficient dysfunctional cells, the compartments maintained a phase-separated liquid droplet structure, which facilitated a significant enhancement of NO production in the dysfunctional cells. The recovery of NO production was further exploited to inhibit clot formation in blood plasma located in the cell suspension. This demonstrated a proof-of-concept design of artificial organelles in dysfunctional cells for cell repair and anticoagulation-related medical applications. Our results demonstrate an approach for the construction of coacervate droplets through phase separation for the generation of artificial membraneless organelles, which can be designed to provide an array of functionalities in living organisms that have the potential to be used in the field of cell engineering and medical therapy. 展开更多
关键词 artificial membraneless organelles coacervate microdroplets nitric oxide liquid-liquid phase separation cell repair
原文传递
Microencapsulation of Fish Oil by Simple Coacervation of Hydroxypropyl Methylcellulose 被引量:6
17
作者 WU, Ke-Gang CHAI, Xiang-Hua CHEN, Yue 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2005年第11期1569-1572,共4页
To improve the oxidative stability and application of fish oil, it was microencapsulated by simple coacervation followed by spray drying. Simple coacervation took place by adding malt dextrin into the emulsion of fish... To improve the oxidative stability and application of fish oil, it was microencapsulated by simple coacervation followed by spray drying. Simple coacervation took place by adding malt dextrin into the emulsion of fish oil and hydroxypropyl methylcellulose (HPMC) solution. Influences of several process parameters on the microencapsulation were evaluated and the oxidative stability and microstructure of microcapsules were analyzed. Results showed that the coacervation could be observed only when dextrose equivalent value (DE value) of malt dextrin, concentration of HPMC solution and fish oil percentage in microcapsules were no more than 20. 5% and 40%, respectively. Moreover, microencapsulation efficiency was higher at HPMC solution concentration of 4% and fish oil percentage of less than 30%. The oxidative stability of fish oil was improved by the microencapsulation and done best in the ease of replacing malt dextrin by 40% with acacia. Scanning electronic microscopic photographs showed that the microcapsule obtained was a round, smooth and hollow microcapsule with its wall made up of innumerable small and solid submicrocapsules with the core of fish oil. 展开更多
关键词 fish oil hydroxypropyl methylcellulose malt dextrin microencapsulafion simple coacervation
原文传递
Microencapsulation of dodecyl acetate by complex coacervation of whey protein with acacia gum and its release behavior 被引量:1
18
作者 You Tong Yu Li Na Liu +1 位作者 Xiao Li Zhu Xiang Zheng Kong 《Chinese Chemical Letters》 SCIE CAS CSCD 2012年第7期847-850,共4页
Complex coacervation of whey protein(WP) with acacia gum(AG) was carried out in water with the presence of dodecyl acetate (DA),a component of insect sex pheromones,in order to obtain microcapsules with DA as th... Complex coacervation of whey protein(WP) with acacia gum(AG) was carried out in water with the presence of dodecyl acetate (DA),a component of insect sex pheromones,in order to obtain microcapsules with DA as the core material and WP-AG coacervate as the wall materials.Through variations in wall/core ratios,concentrations of the wall materials in capsule preparations,DA encapsulation was optimized,which showed a high DA encapsulation was achieved when coacervation was conducted at pH 3.5 with wall/core mass ratio at 3 combined with concentration of wall materials at 1.0 wt%.Morphology and the structure of DA loaded microcapsules were examined by scanning electron microscope,which showed the microcapsules were of core/shell structure with DA encapsulated in the inner of the microcapsules.DA release was examined and the behavior of the release was discussed. 展开更多
关键词 Whey protein Acacia gum Complex coacervation Insect pheromone encapsulation Controlled release
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部