期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Deep Gradient Learning for Efficient Camouflaged Object Detection 被引量:14
1
作者 Ge-Peng Ji Deng-Ping Fan +3 位作者 Yu-Cheng Chou Dengxin Dai Alexander Liniger Luc Van Gool 《Machine Intelligence Research》 EI CSCD 2023年第1期92-108,共17页
This paper introduces deep gradient network(DGNet),a novel deep framework that exploits object gradient supervision for camouflaged object detection(COD).It decouples the task into two connected branches,i.e.,a contex... This paper introduces deep gradient network(DGNet),a novel deep framework that exploits object gradient supervision for camouflaged object detection(COD).It decouples the task into two connected branches,i.e.,a context and a texture encoder.The es-sential connection is the gradient-induced transition,representing a soft grouping between context and texture features.Benefiting from the simple but efficient framework,DGNet outperforms existing state-of-the-art COD models by a large margin.Notably,our efficient version,DGNet-S,runs in real-time(80 fps)and achieves comparable results to the cutting-edge model JCSOD-CVPR21 with only 6.82%parameters.The application results also show that the proposed DGNet performs well in the polyp segmentation,defect detec-tion,and transparent object segmentation tasks.The code will be made available at https://github.com/GewelsJI/DGNet. 展开更多
关键词 Camouflaged object detection(cod) object gradient soft grouping efficient model image segmentation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部