It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(...It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(A_(2)B_(2)O_(7)-type)catalysts with disordered defective cubic fluorite phased structure were successfully prepared by a colloidal crystal template method.3DOM structure promotes the accessibility of the gaseous reactants(O2and CH4)to the active sites.The co-doping of Ca and Sr ions in La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts improved the formation of oxygen vacancies,thereby leading to increased density of surface-active oxygen species(O_(2)^(-))for the activation of CH4and the formation of C2products(C2H6and C2H4).3DOM La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts exhibit high catalytic activity for OCM at low temperature.3DOM La1.7Sr0.3Ce1.7Ca0.3O7-δcatalyst with the highest density of O_(2)^(-)species exhibited the highest catalytic activity for low-temperature OCM,i.e.,its CH4conversion,selectivity and yield of C2products at 650℃are 32.2%,66.1%and 21.3%,respectively.The mechanism was proposed that the increase in surface oxygen vacancies induced by the co-doping of Ca and Sr ions boosts the key step of C-H bond breaking and C-C bond coupling in catalyzing low-temperature OCM.It is meaningful for the development of the low-temperature and high-efficient catalysts for OCM reaction in practical application.展开更多
This study demonstrates the influence of the Ag^(+)/PO_(4)^(3-)ratio in precursor solution on the crystal structural formation,morphology,physical properties,and photocatalytic performance of a Ag_(3)PO_(4)photocataly...This study demonstrates the influence of the Ag^(+)/PO_(4)^(3-)ratio in precursor solution on the crystal structural formation,morphology,physical properties,and photocatalytic performance of a Ag_(3)PO_(4)photocatalyst that is fabricated,using a facile precipitation method,from AgNO_(3)and Na2HPO_(4)·12H_(2)O.The material characterizations were carried out using x-ray diffraction(XRD),scanning electron microscopy(SEM),energy-dispersive x-ray spectroscopy(EDX),Brunauer–Emmett–Teller(BET)surface area,Fourier transform infrared(FTIR)absorption,Raman scattering,x-ray photoelectron spectroscopy(XPS),UV-vis absorption,and photoluminescence(PL).The results show that Ag_(3)PO_(4)crystallizes better when the excess PO_(4)^(3-)content increases,and the lattice parameters decrease slightly,while the crystal diameter and the particle size increase.This change is also observed in the Raman scattering and FTIR spectra with the increase in the vibration frequency of the[PO_(4)]group.The compression of the[PO_(4)]unit was also confirmed in the XPS spectra with the shift of P 2p peaks toward higher binding energy.The photocatalytic results showed that the samples synthesized from excess PO_(4)^(3-)solution exhibited higher photocatalytic performance compared to the sample with a Ag^(+)/PO_(4)^(3-)ratio of 3:1.A sample prepared from the precursor solution with a Ag^(+)/PO_(4)^(3-)ratio of 3:1.5 was optimal for RhB decomposition under both visible light and natural sunlight,completely decomposing 10 ppm RhB after 15 minutes of xenon lamp irradiation and after 60 minutes under solar light irradiation.This is attributed to the high crystallinity,small particle size and low electron–hole recombination rate of the sample.展开更多
基金supported by the National Key Research and Development Program of China(Nos.2022YFB3504100,2022YFB3506200)the National Natural Science Foundation of China(Nos.22208373,22376217)+1 种基金the Beijing Nova Program(No.20220484215)the Science Foundation of China University of Petroleum,Beijing(No.2462023YJRC030)。
文摘It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(A_(2)B_(2)O_(7)-type)catalysts with disordered defective cubic fluorite phased structure were successfully prepared by a colloidal crystal template method.3DOM structure promotes the accessibility of the gaseous reactants(O2and CH4)to the active sites.The co-doping of Ca and Sr ions in La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts improved the formation of oxygen vacancies,thereby leading to increased density of surface-active oxygen species(O_(2)^(-))for the activation of CH4and the formation of C2products(C2H6and C2H4).3DOM La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts exhibit high catalytic activity for OCM at low temperature.3DOM La1.7Sr0.3Ce1.7Ca0.3O7-δcatalyst with the highest density of O_(2)^(-)species exhibited the highest catalytic activity for low-temperature OCM,i.e.,its CH4conversion,selectivity and yield of C2products at 650℃are 32.2%,66.1%and 21.3%,respectively.The mechanism was proposed that the increase in surface oxygen vacancies induced by the co-doping of Ca and Sr ions boosts the key step of C-H bond breaking and C-C bond coupling in catalyzing low-temperature OCM.It is meaningful for the development of the low-temperature and high-efficient catalysts for OCM reaction in practical application.
基金Project supported by a scientific and technological project at the level of Ministry of Education and Training(Grant No.B2020-MDA-11).
文摘This study demonstrates the influence of the Ag^(+)/PO_(4)^(3-)ratio in precursor solution on the crystal structural formation,morphology,physical properties,and photocatalytic performance of a Ag_(3)PO_(4)photocatalyst that is fabricated,using a facile precipitation method,from AgNO_(3)and Na2HPO_(4)·12H_(2)O.The material characterizations were carried out using x-ray diffraction(XRD),scanning electron microscopy(SEM),energy-dispersive x-ray spectroscopy(EDX),Brunauer–Emmett–Teller(BET)surface area,Fourier transform infrared(FTIR)absorption,Raman scattering,x-ray photoelectron spectroscopy(XPS),UV-vis absorption,and photoluminescence(PL).The results show that Ag_(3)PO_(4)crystallizes better when the excess PO_(4)^(3-)content increases,and the lattice parameters decrease slightly,while the crystal diameter and the particle size increase.This change is also observed in the Raman scattering and FTIR spectra with the increase in the vibration frequency of the[PO_(4)]group.The compression of the[PO_(4)]unit was also confirmed in the XPS spectra with the shift of P 2p peaks toward higher binding energy.The photocatalytic results showed that the samples synthesized from excess PO_(4)^(3-)solution exhibited higher photocatalytic performance compared to the sample with a Ag^(+)/PO_(4)^(3-)ratio of 3:1.A sample prepared from the precursor solution with a Ag^(+)/PO_(4)^(3-)ratio of 3:1.5 was optimal for RhB decomposition under both visible light and natural sunlight,completely decomposing 10 ppm RhB after 15 minutes of xenon lamp irradiation and after 60 minutes under solar light irradiation.This is attributed to the high crystallinity,small particle size and low electron–hole recombination rate of the sample.