A three-degree-of-freedom vibro-bounce system is considered. The disturbed map of period one single-impact motion is derived analytically. A center manifold theorem technique is applied to reduce the Poincaré map...A three-degree-of-freedom vibro-bounce system is considered. The disturbed map of period one single-impact motion is derived analytically. A center manifold theorem technique is applied to reduce the Poincaré map to a three-dimensional one, and the normal form map associated with Hopf-flip bifurcation is obtained. Dynamical behavior of the system, near the point of codimension two bifurcation, is investigated by using qualitative analysis and numerical simulation. It is found that near the point of Hopf-flip bifurcation there exists not only Hopf bifurcation of period one single-impact motion, but also Hopf bifurcation of period two double-impact motion. The results from simulation show that there exists an interesting torus doubling bifurcation near the codimension two bifurcation. The torus doubling bifurcation makes the quasi-periodic attractor associated with period one single-impact motion transform to the other quasi-periodic attractor represented by two attracting closed circles. The torus bifurcation is qualitatively different from the typical torus doubling bifurcation occurring in the vibro-impact systems. Different routes from period one single-impact motion to chaos are observed by numerical simulation.展开更多
A vibro-impact forming machine with double masses is considered. The components of the vibrating system collide with each other. Such models play an important role in the studies of dynamics of mechanical systems with...A vibro-impact forming machine with double masses is considered. The components of the vibrating system collide with each other. Such models play an important role in the studies of dynamics of mechanical systems with impacting components. The Poincaré section associated with the state of the impact-forming system, just immediately after the impact, is chosen, and the period n single-impact motion and its disturbed map are derived analytically. A center manifold theorem technique is applied to reduce the Poincaré map to a two-dimensional map, and the normal form map associated with codimension two bifurcation of 1:2 resonance is obtained, Unfolding of the normal form map is analyzed. Dynamical behavior of the impact-forming system, near the point of codimension two bifurcation, is investigated by using qualitative analyses and numerical simulation. Near the point of codimension two bifurcation there exists not only Neimark-Sacker bifurcation associated with period one single-impact motion, but also Neimark-Sacker bifurcation of period two double-impact motion. Transition of different forms of fixed points of single-impact periodic orbits, near the bifurcation point, is demonstrated, and different routes from periodic impact motions to chaos are also discussed.展开更多
Bifurcation problems of a spring-mass system vibrating against an infinite large plane are studied in this paper. It is shown that there exist phenomena of codimension two bifurcations when the ratios of frequencies a...Bifurcation problems of a spring-mass system vibrating against an infinite large plane are studied in this paper. It is shown that there exist phenomena of codimension two bifurcations when the ratios of frequencies are in the neigborhood of the same special values and the coefficient of restitution approach unity. By theory of normal forms, we reduce Poincare maps to normal forms.and find flip bifurcations, Hopf bifurcations of fixed points and that of period two points The theoretical solutions are verified by numerical computations.展开更多
Recently,Pipoli and Sinestrari[Pipoli,G.and Sinestrari,C.,Mean curvature flow of pinched submanifolds of CPn,Comm.Anal.Geom.,25,2017,799-846]initiated the study of convergence problem for the mean curvature flow of sm...Recently,Pipoli and Sinestrari[Pipoli,G.and Sinestrari,C.,Mean curvature flow of pinched submanifolds of CPn,Comm.Anal.Geom.,25,2017,799-846]initiated the study of convergence problem for the mean curvature flow of small codimension in the complex projective space CPm.The purpose of this paper is to develop the work due to Pipoli and Sinestrari,and verify a new convergence theorem for the mean curvature flow of arbitrary codimension in the complex projective space.Namely,the authors prove that if the initial submanifold in CPm satisfies a suitable pinching condition,then the mean curvature flow converges to a round point in finite time,or converges to a totally geodesic submanifold as t→∞.Consequently,they obtain a differentiable sphere theorem for submanifolds in the complex projective space.展开更多
First it is proved that both the integral of the divergence and the Melnikov function are invariants of the C2 transformation. Then, the problem of the planar homoclinic bifurcation with codimension 3 is considered. I...First it is proved that both the integral of the divergence and the Melnikov function are invariants of the C2 transformation. Then, the problem of the planar homoclinic bifurcation with codimension 3 is considered. It is proved that, in a small neighborhood of the origin in the parameter space of a Cr (r≥5) system, there exist exactly two Cr-1 semi- stable- limit- cycle branching surfaces, and their common boundary is a unique Cr-1 three-multiple- limit-cycle branching curve. The bifurcation pictures and the asymptotic expansions of the bifurcation functions are given. The stability criterion for the homoclinic loop is also obtained when the integral of the divergence is zero. The proof of the auxiliary theorems will be presented in [16].展开更多
Let M be an approximately finite codimensional quasi-invariant subspace of the Fock space. This paper gives a formula to calculate the codimension of such spaces and uses this formula to study the structure of quasi-i...Let M be an approximately finite codimensional quasi-invariant subspace of the Fock space. This paper gives a formula to calculate the codimension of such spaces and uses this formula to study the structure of quasi-invariant subspaces of the Fock space. Especially, as one of applications, it is showed that the analogue of Beurling's theorem is not true for the Fock space L_a^2 in the case of n > 2.展开更多
Ⅰ. INTRODUCTION We are interested in the following problem of differential topology: Let W be a manifold with boundary M. When does an immersion f: M→X extend to an immersion of
Let X C P^NC be an n-dimensional nondegenerate smooth projective variety containing an mdimensional subvariety Y.Assume that either m〉n/2 and X is a complete intersection or that m≥ N2.We show deg(X)|deg(Y)and ...Let X C P^NC be an n-dimensional nondegenerate smooth projective variety containing an mdimensional subvariety Y.Assume that either m〉n/2 and X is a complete intersection or that m≥ N2.We show deg(X)|deg(Y)and codim Y Y ≥codimPN X,where Y is the linear span of Y.These bounds are sharp.As an application,we classify smooth projective n-dimensional quadratic varieties swept out by m≥[n/2]+1 dimensional quadrics passing through one point.展开更多
In this paper,we obtain a sufficient and necessary condition for a simply connected Riemannian manifold(M^n,g) to be isometrically immersed,as a submanifold with codimension p 〉 1,into the product S^k×H^n+p+...In this paper,we obtain a sufficient and necessary condition for a simply connected Riemannian manifold(M^n,g) to be isometrically immersed,as a submanifold with codimension p 〉 1,into the product S^k×H^n+p+k of sphere and hyperboloid.展开更多
This paper deals with the optimal control problems of systems governed by a parabolic variational inequality coupled with a semilinear parabolic differential equations. The maximum principle and some kind of approxima...This paper deals with the optimal control problems of systems governed by a parabolic variational inequality coupled with a semilinear parabolic differential equations. The maximum principle and some kind of approximate controllability are studied.展开更多
Normal form theory is a very effective method when we study degenerate bifurcations of nonlinear dynamical systems. In this paper by using adjoint operator method, normal forms of order 3 and 4 for nonlinear dynamical...Normal form theory is a very effective method when we study degenerate bifurcations of nonlinear dynamical systems. In this paper by using adjoint operator method, normal forms of order 3 and 4 for nonlinear dynamical system with nilpotent linear part and Z(2)-asymmetry are computed. According to normal forms obtained, universal unfoldings for some degenerate bifurcation cases of codimension 3 and simple global characterizations, are studied.展开更多
The existence and stability ol periodic solutions for the two-dimensional system x' = f(x)+?g(x ,a), 0<ε<<1 ,a?R whose unperturbed systemis Hamiltonian can be decided by using the signs of Melnikov's...The existence and stability ol periodic solutions for the two-dimensional system x' = f(x)+?g(x ,a), 0<ε<<1 ,a?R whose unperturbed systemis Hamiltonian can be decided by using the signs of Melnikov's function. The results can be applied to the construction of phase portraits in the bifurcation set of codimension two bifurcations of flows with doublezero eigenvalues.展开更多
In this paper,we study the determinacy of real smooth map-germs and obtain severalresults about the sufficient condition and necessary condition of a special determinacy .and aboutthe exact order to determinacy.We als...In this paper,we study the determinacy of real smooth map-germs and obtain severalresults about the sufficient condition and necessary condition of a special determinacy .and aboutthe exact order to determinacy.We also obtain a result on the Zeeman's conjecture of smooth function-germs. This resultis a generalization of Siersma's lemma.展开更多
基金The project supported by the National Natural Scicnce Foundation of China(10172042,50475109)the Natural Science Foundation of Gansu Province Government of China(ZS-031-A25-007-Z(key item))
文摘A three-degree-of-freedom vibro-bounce system is considered. The disturbed map of period one single-impact motion is derived analytically. A center manifold theorem technique is applied to reduce the Poincaré map to a three-dimensional one, and the normal form map associated with Hopf-flip bifurcation is obtained. Dynamical behavior of the system, near the point of codimension two bifurcation, is investigated by using qualitative analysis and numerical simulation. It is found that near the point of Hopf-flip bifurcation there exists not only Hopf bifurcation of period one single-impact motion, but also Hopf bifurcation of period two double-impact motion. The results from simulation show that there exists an interesting torus doubling bifurcation near the codimension two bifurcation. The torus doubling bifurcation makes the quasi-periodic attractor associated with period one single-impact motion transform to the other quasi-periodic attractor represented by two attracting closed circles. The torus bifurcation is qualitatively different from the typical torus doubling bifurcation occurring in the vibro-impact systems. Different routes from period one single-impact motion to chaos are observed by numerical simulation.
基金The project supported by the National Natural Science Foundation of China (10572055, 50475109) and the Natural Science Foundation of Gansu Province Government of China (3ZS051-A25-030(key item)) The English text was polished by Keren Wang.
文摘A vibro-impact forming machine with double masses is considered. The components of the vibrating system collide with each other. Such models play an important role in the studies of dynamics of mechanical systems with impacting components. The Poincaré section associated with the state of the impact-forming system, just immediately after the impact, is chosen, and the period n single-impact motion and its disturbed map are derived analytically. A center manifold theorem technique is applied to reduce the Poincaré map to a two-dimensional map, and the normal form map associated with codimension two bifurcation of 1:2 resonance is obtained, Unfolding of the normal form map is analyzed. Dynamical behavior of the impact-forming system, near the point of codimension two bifurcation, is investigated by using qualitative analyses and numerical simulation. Near the point of codimension two bifurcation there exists not only Neimark-Sacker bifurcation associated with period one single-impact motion, but also Neimark-Sacker bifurcation of period two double-impact motion. Transition of different forms of fixed points of single-impact periodic orbits, near the bifurcation point, is demonstrated, and different routes from periodic impact motions to chaos are also discussed.
文摘Bifurcation problems of a spring-mass system vibrating against an infinite large plane are studied in this paper. It is shown that there exist phenomena of codimension two bifurcations when the ratios of frequencies are in the neigborhood of the same special values and the coefficient of restitution approach unity. By theory of normal forms, we reduce Poincare maps to normal forms.and find flip bifurcations, Hopf bifurcations of fixed points and that of period two points The theoretical solutions are verified by numerical computations.
基金supported by the National Natural Science Foundation of China(Nos.12071424,11531012,12201087).
文摘Recently,Pipoli and Sinestrari[Pipoli,G.and Sinestrari,C.,Mean curvature flow of pinched submanifolds of CPn,Comm.Anal.Geom.,25,2017,799-846]initiated the study of convergence problem for the mean curvature flow of small codimension in the complex projective space CPm.The purpose of this paper is to develop the work due to Pipoli and Sinestrari,and verify a new convergence theorem for the mean curvature flow of arbitrary codimension in the complex projective space.Namely,the authors prove that if the initial submanifold in CPm satisfies a suitable pinching condition,then the mean curvature flow converges to a round point in finite time,or converges to a totally geodesic submanifold as t→∞.Consequently,they obtain a differentiable sphere theorem for submanifolds in the complex projective space.
文摘First it is proved that both the integral of the divergence and the Melnikov function are invariants of the C2 transformation. Then, the problem of the planar homoclinic bifurcation with codimension 3 is considered. It is proved that, in a small neighborhood of the origin in the parameter space of a Cr (r≥5) system, there exist exactly two Cr-1 semi- stable- limit- cycle branching surfaces, and their common boundary is a unique Cr-1 three-multiple- limit-cycle branching curve. The bifurcation pictures and the asymptotic expansions of the bifurcation functions are given. The stability criterion for the homoclinic loop is also obtained when the integral of the divergence is zero. The proof of the auxiliary theorems will be presented in [16].
文摘Let M be an approximately finite codimensional quasi-invariant subspace of the Fock space. This paper gives a formula to calculate the codimension of such spaces and uses this formula to study the structure of quasi-invariant subspaces of the Fock space. Especially, as one of applications, it is showed that the analogue of Beurling's theorem is not true for the Fock space L_a^2 in the case of n > 2.
文摘In this paper the following problem has been completely solved:when is a map f:P(m‘n)→CP<sup>?</sup> homotopic to an immersion with codimension one or
文摘Ⅰ. INTRODUCTION We are interested in the following problem of differential topology: Let W be a manifold with boundary M. When does an immersion f: M→X extend to an immersion of
文摘Let X C P^NC be an n-dimensional nondegenerate smooth projective variety containing an mdimensional subvariety Y.Assume that either m〉n/2 and X is a complete intersection or that m≥ N2.We show deg(X)|deg(Y)and codim Y Y ≥codimPN X,where Y is the linear span of Y.These bounds are sharp.As an application,we classify smooth projective n-dimensional quadratic varieties swept out by m≥[n/2]+1 dimensional quadrics passing through one point.
基金Supported by NSFC(Grant Nos.11171091,11371018)partially supported by NSF of He'nan Province(Grant No.132300410141)
文摘In this paper,we obtain a sufficient and necessary condition for a simply connected Riemannian manifold(M^n,g) to be isometrically immersed,as a submanifold with codimension p 〉 1,into the product S^k×H^n+p+k of sphere and hyperboloid.
基金This work was partially supported by the NutionalNatural Science Foundation of China
文摘This paper deals with the optimal control problems of systems governed by a parabolic variational inequality coupled with a semilinear parabolic differential equations. The maximum principle and some kind of approximate controllability are studied.
文摘Normal form theory is a very effective method when we study degenerate bifurcations of nonlinear dynamical systems. In this paper by using adjoint operator method, normal forms of order 3 and 4 for nonlinear dynamical system with nilpotent linear part and Z(2)-asymmetry are computed. According to normal forms obtained, universal unfoldings for some degenerate bifurcation cases of codimension 3 and simple global characterizations, are studied.
基金The project is supported by the National Natural Science Foundation of China
文摘The existence and stability ol periodic solutions for the two-dimensional system x' = f(x)+?g(x ,a), 0<ε<<1 ,a?R whose unperturbed systemis Hamiltonian can be decided by using the signs of Melnikov's function. The results can be applied to the construction of phase portraits in the bifurcation set of codimension two bifurcations of flows with doublezero eigenvalues.
文摘In this paper,we study the determinacy of real smooth map-germs and obtain severalresults about the sufficient condition and necessary condition of a special determinacy .and aboutthe exact order to determinacy.We also obtain a result on the Zeeman's conjecture of smooth function-germs. This resultis a generalization of Siersma's lemma.