The effect of collagen-chitosan membrane with different proportionate collagen and bFGF were investigated for culture human fibroblast. The optimum weight ratio of collagen/chitoson and bFGF were selected. Using cultu...The effect of collagen-chitosan membrane with different proportionate collagen and bFGF were investigated for culture human fibroblast. The optimum weight ratio of collagen/chitoson and bFGF were selected. Using culture human fibroblast technologies and cytotoxicity evaluated in vitro, Cell morphology was observed. Experimental results show that collagen-chitosan with bFGF promoted human fibroblast adhesion and supported cell proliferation for a long time. Furthermore collagen-chitosan membrane obviously degrade after 18d when human fibroblast was exhibited fusion spreading, compacting and stabilize. Cytotoxic to human fibroblast was revealed very low . Collagen- chitosan with bFGF should be useful as a tissue engineering biomaterial scaffold for cell culture.展开更多
A novel biomaterial scaffold was created from collagen chitosan/GAG. Its tensile strength was 8.6MPa(wet state)and degree of swelling water was 60%~75% with higer ultimate elongation 300%. Rabbit corneas of collagen ...A novel biomaterial scaffold was created from collagen chitosan/GAG. Its tensile strength was 8.6MPa(wet state)and degree of swelling water was 60%~75% with higer ultimate elongation 300%. Rabbit corneas of collagen chitosan/GAG implantation samples in vivo for biodegradation showed that the inplantion samples was complets biodegrable and digested afere 120 day. There was enought time to maintain cell growth,immigrating and proliferation. This biomaterials scaffold can be used for cell culture and in various tissue engineering fields.展开更多
Combinations of biomaterials and cells can effectively target delivery of cells or other therapeutic factors to the brain to rebuild damaged nerve pathways after brain injury.Porous collagen-chitosan scaffolds were pr...Combinations of biomaterials and cells can effectively target delivery of cells or other therapeutic factors to the brain to rebuild damaged nerve pathways after brain injury.Porous collagen-chitosan scaffolds were prepared by a freeze-drying method based on brain tissue engineering.The scaffolds were impregnated with rat bone marrow mesenchymal stem cells.A traumatic brain injury rat model was established using the 300 g weight free fall impact method.Bone marrow mesenchymal stem cells/collagen-chitosan scaffolds were implanted into the injured brain.Modified neurological severity scores were used to assess the recovery of neurological function.The Morris water maze was employed to determine spatial learning and memory abilities.Hematoxylin-eosin staining was performed to measure pathological changes in brain tissue.Immunohistochemistry was performed for vascular endothelial growth factor and for 5-bromo-2-deoxyuridine(BrdU)/neuron specific enolase and BrdU/glial fibrillary acidic protein.Our results demonstrated that the transplantation of bone marrow mesenchymal stem cells and collagen-chitosan scaffolds to traumatic brain injury rats remarkably reduced modified neurological severity scores,shortened the average latency of the Morris water maze,increased the number of platform crossings,diminished the degeneration of damaged brain tissue,and increased the positive reaction of vascular endothelial growth factor in the transplantation and surrounding areas.At 14 days after transplantation,increased BrdU/glial fibrillary acidic protein expression and decreased BrdU/neuron specific enolase expression were observed in bone marrow mesenchymal stem cells in the injured area.The therapeutic effect of bone marrow mesenchymal stem cells and collagen-chitosan scaffolds was superior to stereotactic injection of bone marrow mesenchymal stem cells alone.To test the biocompatibility and immunogenicity of bone marrow mesenchymal stem cells and collagen-chitosan scaffolds,immunosuppressive cyclosporine was intravenously injected 12 hours before transplantation and 1-5 days after transplantation.The above indicators were similar to those of rats treated with bone marrow mesenchymal stem cells and collagen-chitosan scaffolds only.These findings indicate that transplantation of bone marrow mesenchymal stem cells in a collagen-chitosan scaffold can promote the recovery of neuropathological injury in rats with traumatic brain injury.This approach has the potential to be developed as a treatment for traumatic brain injury in humans.All experimental procedures were approved by the Institutional Animal Investigation Committee of Capital Medical University,China(approval No.AEEI-2015-035)in December 2015.展开更多
构建具备良好热稳定性、自组装性质及生物相容性的可食性细胞外基质(extracellular matrix,ECM)类似物支架对于制造结构化细胞培养肉制品至关重要。将羧甲基壳聚糖(carboxymethyl chitosan,CMCS)引入牛骨胶原蛋白(bovine bone collagen,...构建具备良好热稳定性、自组装性质及生物相容性的可食性细胞外基质(extracellular matrix,ECM)类似物支架对于制造结构化细胞培养肉制品至关重要。将羧甲基壳聚糖(carboxymethyl chitosan,CMCS)引入牛骨胶原蛋白(bovine bone collagen,BBC)体系中,通过光谱分析(紫外、红外、荧光光谱)发现BBC与CMCS的相互作用随着引入CMCS添加量的增加而增强,但并未影响BBC的三螺旋结构。差示扫描量热法/热重分析结果表明,CMCS的引入增强了BBC体系的热稳定性。浊度试验及扫描电子显微镜/透射电子显微镜观察结果证实了CMCS引入后胶原蛋白纤维形成度呈上升趋势,聚集行为更明显且自组装速率产生变化,呈现出更疏松扭曲的三维结构以及更大的纤维直径及更广泛的直径分布。但CMCS的引入并未明显影响BBC的D-周期性结构(胶原纤维自组装过程中形成的特征性明暗交替的周期性横纹结构)形成及其长度,且CMCS引入前后体系的细胞相容性也未呈现显著性差异。随着引入CMCS添加量增加,CMCS和BBC之间的静电作用力可能较共价相互作用和氢键更占优势。这些结果表明,CMCS的引入不影响BBC三螺旋结构完整性和生物相容性,并改善了BBC的热稳定性及体外自组装性质。这为开发新型优良可食性胶原蛋白基ECM仿生支架在细胞培养肉领域的应用以及畜禽骨副产物高值化精深加工利用提供了参考信息。展开更多
文摘The effect of collagen-chitosan membrane with different proportionate collagen and bFGF were investigated for culture human fibroblast. The optimum weight ratio of collagen/chitoson and bFGF were selected. Using culture human fibroblast technologies and cytotoxicity evaluated in vitro, Cell morphology was observed. Experimental results show that collagen-chitosan with bFGF promoted human fibroblast adhesion and supported cell proliferation for a long time. Furthermore collagen-chitosan membrane obviously degrade after 18d when human fibroblast was exhibited fusion spreading, compacting and stabilize. Cytotoxic to human fibroblast was revealed very low . Collagen- chitosan with bFGF should be useful as a tissue engineering biomaterial scaffold for cell culture.
文摘A novel biomaterial scaffold was created from collagen chitosan/GAG. Its tensile strength was 8.6MPa(wet state)and degree of swelling water was 60%~75% with higer ultimate elongation 300%. Rabbit corneas of collagen chitosan/GAG implantation samples in vivo for biodegradation showed that the inplantion samples was complets biodegrable and digested afere 120 day. There was enought time to maintain cell growth,immigrating and proliferation. This biomaterials scaffold can be used for cell culture and in various tissue engineering fields.
基金financially supported by the Postdoctoral Research Foundation of Beijing of China,No.2017-ZZ-120(to FY)the Natural Science Foundation of Beijing of China,No.2164073(to ML)the Beijing Municipal Administration of Hospitals’ Youth Plan of China,No.QML20180804(to ML)
文摘Combinations of biomaterials and cells can effectively target delivery of cells or other therapeutic factors to the brain to rebuild damaged nerve pathways after brain injury.Porous collagen-chitosan scaffolds were prepared by a freeze-drying method based on brain tissue engineering.The scaffolds were impregnated with rat bone marrow mesenchymal stem cells.A traumatic brain injury rat model was established using the 300 g weight free fall impact method.Bone marrow mesenchymal stem cells/collagen-chitosan scaffolds were implanted into the injured brain.Modified neurological severity scores were used to assess the recovery of neurological function.The Morris water maze was employed to determine spatial learning and memory abilities.Hematoxylin-eosin staining was performed to measure pathological changes in brain tissue.Immunohistochemistry was performed for vascular endothelial growth factor and for 5-bromo-2-deoxyuridine(BrdU)/neuron specific enolase and BrdU/glial fibrillary acidic protein.Our results demonstrated that the transplantation of bone marrow mesenchymal stem cells and collagen-chitosan scaffolds to traumatic brain injury rats remarkably reduced modified neurological severity scores,shortened the average latency of the Morris water maze,increased the number of platform crossings,diminished the degeneration of damaged brain tissue,and increased the positive reaction of vascular endothelial growth factor in the transplantation and surrounding areas.At 14 days after transplantation,increased BrdU/glial fibrillary acidic protein expression and decreased BrdU/neuron specific enolase expression were observed in bone marrow mesenchymal stem cells in the injured area.The therapeutic effect of bone marrow mesenchymal stem cells and collagen-chitosan scaffolds was superior to stereotactic injection of bone marrow mesenchymal stem cells alone.To test the biocompatibility and immunogenicity of bone marrow mesenchymal stem cells and collagen-chitosan scaffolds,immunosuppressive cyclosporine was intravenously injected 12 hours before transplantation and 1-5 days after transplantation.The above indicators were similar to those of rats treated with bone marrow mesenchymal stem cells and collagen-chitosan scaffolds only.These findings indicate that transplantation of bone marrow mesenchymal stem cells in a collagen-chitosan scaffold can promote the recovery of neuropathological injury in rats with traumatic brain injury.This approach has the potential to be developed as a treatment for traumatic brain injury in humans.All experimental procedures were approved by the Institutional Animal Investigation Committee of Capital Medical University,China(approval No.AEEI-2015-035)in December 2015.
文摘构建具备良好热稳定性、自组装性质及生物相容性的可食性细胞外基质(extracellular matrix,ECM)类似物支架对于制造结构化细胞培养肉制品至关重要。将羧甲基壳聚糖(carboxymethyl chitosan,CMCS)引入牛骨胶原蛋白(bovine bone collagen,BBC)体系中,通过光谱分析(紫外、红外、荧光光谱)发现BBC与CMCS的相互作用随着引入CMCS添加量的增加而增强,但并未影响BBC的三螺旋结构。差示扫描量热法/热重分析结果表明,CMCS的引入增强了BBC体系的热稳定性。浊度试验及扫描电子显微镜/透射电子显微镜观察结果证实了CMCS引入后胶原蛋白纤维形成度呈上升趋势,聚集行为更明显且自组装速率产生变化,呈现出更疏松扭曲的三维结构以及更大的纤维直径及更广泛的直径分布。但CMCS的引入并未明显影响BBC的D-周期性结构(胶原纤维自组装过程中形成的特征性明暗交替的周期性横纹结构)形成及其长度,且CMCS引入前后体系的细胞相容性也未呈现显著性差异。随着引入CMCS添加量增加,CMCS和BBC之间的静电作用力可能较共价相互作用和氢键更占优势。这些结果表明,CMCS的引入不影响BBC三螺旋结构完整性和生物相容性,并改善了BBC的热稳定性及体外自组装性质。这为开发新型优良可食性胶原蛋白基ECM仿生支架在细胞培养肉领域的应用以及畜禽骨副产物高值化精深加工利用提供了参考信息。