期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Ion and electron motions in the outer electron diffusion region of collisionless magnetic reconnection
1
作者 Cong Chang QuanMing Lu +2 位作者 San Lu Kai Huang RongSheng Wang 《Earth and Planetary Physics》 EI CAS CSCD 2024年第3期472-478,共7页
Two-dimensional particle-in-cell simulations are performed to study the coupling between ion and electron motions in collisionless magnetic reconnection.The electron diffusion region(EDR),where the electron motions ar... Two-dimensional particle-in-cell simulations are performed to study the coupling between ion and electron motions in collisionless magnetic reconnection.The electron diffusion region(EDR),where the electron motions are demagnetized,is found to have a two-layer structure:an inner EDR near the reconnection site and an outer EDR that is elongated to nearly 10 ion inertial lengths in the outflow direction.In the inner EDR,the speed of the electron outflow increases when the electrons move away from the X line.In the outer EDR,the speed of the electron outflow first increases and then decreases until the electrons reach the boundary of the outer EDR.In the boundary of the outer EDR,the magnetic field piles up and forms a depolarization front.From the perspective of the fluid,a force analysis on the formation of electron and ion outflows has also been investigated.Around the X line,the electrons are accelerated by the reconnection electric field in the out-of-plane direction.When the electrons move away from the X line,we find that the Lorentz force converts the direction of the accelerated electrons to the x direction,forming an electron outflow.Both electric field forces and electron gradient forces tend to drag the electron outflow.Ion acceleration along the x direction is caused by the Lorentz force,whereas the pressure gradient force tends to decelerate the ion outflow.Although these two terms are important,their effects on ions are almost offset.The Hall electric field force does positive work on ions and is not negligible.The ions are continuously accelerated,and the ion and electron outflow velocities are almost the same near the depolarization front. 展开更多
关键词 collisionless magnetic reconnection electron diffusion region force analysis particle-in-cell simulation
下载PDF
The effect of the guide field on energy conversion during collisionless magnetic reconnection
2
作者 Hui Xiao ZhiHong Zhong +4 位作者 Meng Zhou YongYuan Yi LiangJin Song Ye Pang XiaoHua Deng 《Earth and Planetary Physics》 CAS CSCD 2023年第4期436-444,共9页
Magnetic reconnection is well known as an efficient mechanism for transferring magnetic energy into plasma energy.However,how the energy conversion and partition between different species is influenced by the shear an... Magnetic reconnection is well known as an efficient mechanism for transferring magnetic energy into plasma energy.However,how the energy conversion and partition between different species is influenced by the shear angle of the reconnecting magnetic component(i.e.,the guide field strength)is not well understood.Using 2.5-dimensional particle-in-cell simulations,we investigated the energy conversion in reconnection with different guide fields.We found that the overall energy conversion first decreases steeply and then increases slowly when the guide field increases fromB_(g)=0 toB_(g)=4.The increase in energy conversion in the large guide field regime is due to the electron energy gain through the perpendicular channelJ_(⊥)·E_(⊥).The overall energy conversion is predominantly contributed byJ_(⊥)·E_(⊥) rather thanJ||E||.We further find that energy conversion mainly occurs within the reconnection front and the flux pileup region.However,the contribution from the fore reconnection front becomes important in large guide field regimes(3<B_(g)≤4)because of the enhanced electron energy gain. 展开更多
关键词 collisionless magnetic reconnection energy conversion guide field particle-in-cell simulation
下载PDF
Collisionless magnetic reconnection in the magnetosphere 被引量:2
3
作者 Quanming Lu Huishan Fu +1 位作者 Rongsheng Wang San Lu 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第8期101-116,共16页
Magnetic reconnection underlies the physical mechanism of explosive phenomena in the solar atmosphere and planetary magnetospheres, where plasma is usually collisionless. In the standard model of collisionless magneti... Magnetic reconnection underlies the physical mechanism of explosive phenomena in the solar atmosphere and planetary magnetospheres, where plasma is usually collisionless. In the standard model of collisionless magnetic reconnection,the diffusion region consists of two substructures: an electron diffusion region is embedded in an ion diffusion region,in which their scales are based on the electron and ion inertial lengths. In the ion diffusion region, ions are unfrozen in the magnetic fields while electrons are magnetized. The resulted Hall effect from the different motions between ions and electrons leads to the production of the in-plane currents, and then generates the quadrupolar structure of out-of-plane magnetic field. In the electron diffusion region, even electrons become unfrozen in the magnetic fields, and the reconnection electric field is contributed by the off-diagonal electron pressure terms in the generalized Ohm’s law. The reconnection rate is insensitive to the specific mechanism to break the frozen-in condition, and is on the order of 0.1. In recent years, the launching of Cluster, THEMIS, MMS, and other spacecraft has provided us opportunities to study collisionless magnetic reconnection in the Earth’s magnetosphere, and to verify and extend more insights on the standard model of collisionless magnetic reconnection. In this paper, we will review what we have learned beyond the standard model with the help of observations from these spacecraft as well as kinetic simulations. 展开更多
关键词 collisionless magnetic reconnection MAGNETOSPHERE
下载PDF
Second-Order Resonant Interaction of Ring Current Protons with Whistler-Mode Waves 被引量:1
4
作者 肖伏良 陈良旭 +1 位作者 贺慧勇 周庆华 《Chinese Physics Letters》 SCIE CAS CSCD 2008年第1期336-339,共4页
We present a study on the second-order resonant interaction between the ring current protons with Whistler-mode waves propagating near the quasi electrostatic limit following the previous second-order resonant theory.... We present a study on the second-order resonant interaction between the ring current protons with Whistler-mode waves propagating near the quasi electrostatic limit following the previous second-order resonant theory. The diffusion coefficients are proportional to the electric field amplitude E, much greater than those for the regular first-order resonance, which are proportional to the electric field amplitudes square E^2. Numerical calculations for the pitch angle scattering are performed for typical energies of protons Ek = 50 keV and 100 keV at locations L = 2 and L = 3.5. The timescale for the loss process of protons by the Whistler waves is found to approach one hour, comparable to that by the EMIC waves, suggesting that Whistler waves may also contribute significantly to the ring current decay under appropriate conditions. 展开更多
关键词 PITCH-ANGLE DIFFUSION RADIATION BELT PROTONS collisionless magnetic reconnection DUCTED PLASMASPHERIC HISS ION-CYCLOTRON WAVES ELECTRONS MAGNETOSPHERE ACCELERATION COEFFICIENTS STORMS
下载PDF
Excitation of Whistler-Mode (Chorus) Emissions during Terrestrial Substorms
5
作者 肖伏良 赵华 贺慧勇 《Chinese Physics Letters》 SCIE CAS CSCD 2005年第9期2451-2454,共4页
The enhanced growth rate of whistler mode waves has been evaluated during an injection event associated with an isolated terrestrial substorm that occurred at 23:00 UT, on January 21, 1991. The electron phase space d... The enhanced growth rate of whistler mode waves has been evaluated during an injection event associated with an isolated terrestrial substorm that occurred at 23:00 UT, on January 21, 1991. The electron phase space density observed by an LEPA instrument on the board of the CRRES spacecraft is modelled by using a bi-loss-cone distribution function (composed of a high anisotropic component and a quasi-isotropic component). During the injection event, the path integrated gain may increase by a factor of 5 over a frequency range near a few tenths of the electron gyrofrequency, which is consistent with the enhancement observed in the CRRES plasma wave experiment (PWE) emissions. Scattering of electrons by the enhanced whistler mode waves causes the pitch angle distribution of resonant electrons to a quasi isotropic (fiat-top) distribution during the terrestrial substorm injection event. 展开更多
关键词 collisionless magnetic reconnection ACCELERATION INSTABILITY ELECTRONS PLASMA WAVES
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部