Compaction process simulation and residual stress prediction of green PM compact were carried out with elasto-plastic 3D FEA based on the modified Drueker-Prager Cap model in Abaqus. The model parameters of the invest...Compaction process simulation and residual stress prediction of green PM compact were carried out with elasto-plastic 3D FEA based on the modified Drueker-Prager Cap model in Abaqus. The model parameters of the investigated powder Distaloy AE were determined as functions of relative density through typical mechanical property tests of powder. The model was implemented as a user subroutine USDFLD. Single sided compaction of a d20 ram^5 mm disk green compact of Distaloy AE was simulated, and the residual stress of the disk after ejection was predicted with FEA. The FEA results of the compaction process and the residual stress of the disk show good agreement with compaction experiments and X-ray diffraction measurements, which validates the model and its parameters. The results indicate that the compressive residual stresses exist mainly in a thin layer on the side surface, but the residual stresses are very small on the top and bottom surfaces.展开更多
Practical experiences gained in the past several years show that the thermal residual stress(TRS) is a main cause leading polycrystalline diamond compacts(PDC) to premature failure.It is the very important to measure ...Practical experiences gained in the past several years show that the thermal residual stress(TRS) is a main cause leading polycrystalline diamond compacts(PDC) to premature failure.It is the very important to measure the TRS accurately for optimizing the interface and improving the service performance of PDC.In this paper,the TRS in 1913 flat-interface PDC was measured using improved stress-release method(ISRM). The TRS on the surface of polycrystalline diamond(PCD) table was obtained,which can be used to calculate the radial thermal residual stress(RTRS) at the interface of PCD table via a refutation process.The obtained results show that there are compressive residual stress at the PCD table interface and in the most region of PCD table surface.The exception occurs near the outer diameter of the PCD table,where the PDC begins to bend and put the PCD table surface into a tension state,an undesirable state for a brittle material.The ISRM has covered the shortage existing in traditional stress-release method,in which only finite points on the surface of PCD table can be tested for one specimen and one time.Simple as the experimental procedures are,the test results are also very accurate and reliable.This method provides the theoretical and experimental basis for testing TRS of PDC accurately.展开更多
To successfully employ powder injection molding (PIM) as a manufacturing technique, the function of the component, design of the part, material and process should be optimized for overall processing ability of the PIM...To successfully employ powder injection molding (PIM) as a manufacturing technique, the function of the component, design of the part, material and process should be optimized for overall processing ability of the PIM process. A comparison between the requirements of flowability and moldability and the compacts shape retention has been made in this work. There is often a contradiction between the requirements of flowability and the compacts shape retention. Many works have been done to attain good molding conditions. However, they fail to take into account the effect of some factors that satisfies good molding conditions on the compacts shape retention during debinding. This paper studies the effect of the powder-binder mixture characteristics and the molding conditions on the flowability and moldability and the shape retention of PIM compacts during debinding process so as to attain the benefits of each.展开更多
Aluminium-alumina compacts with varying wt% of alumina were compacted in the pressure range of 115 - 290 MPa. Compacts prepared at 290 MPa pressure, were sintered in an argon atmosphere at 573, 673, 773 and 873 K for ...Aluminium-alumina compacts with varying wt% of alumina were compacted in the pressure range of 115 - 290 MPa. Compacts prepared at 290 MPa pressure, were sintered in an argon atmosphere at 573, 673, 773 and 873 K for 1 hour. The green density, % porosity, % spring back and hardness of the green compacts were determined. Scanning Electron Microscopy was carried out to observe the morphology of pores and alumina particles in green and sintered compacts. The present study indicates that, densification of the compact increases with increasing compacting pressure and decreases with increasing alumina content. Maximum density achieved is 93% for pure aluminium compacts and decreases to 85% for Al-20 wt% alumina compacts. Grain growth of aluminium particles is noticed in the compacts after sintering at 773 and 873 K. Dispersion of fine alumina particle in the aluminium matrix occurs predominantly in the compact when sintered at 773 K which results in increase in hardness value.展开更多
Thermal residual stresses in polycrystalline diamond compact(PDC)cutter arising from the difference in thermal expansion between the polycrystalline diamond(PCD)and the supporting tungsten carbide substrate after sint...Thermal residual stresses in polycrystalline diamond compact(PDC)cutter arising from the difference in thermal expansion between the polycrystalline diamond(PCD)and the supporting tungsten carbide substrate after sintering at high pressure and high temperature were investigated using finite element simulation,laboratory tests and theoretical analysis.The obtained results show that although compressive residual stresses exist both in the interface of PCD table and in the most region of PCD table surface, the tensile residual stress,which is a fatal shortage to PDC,can also occur near the outer diameter area of PCD table,and the maximum value is 690 MPa.Distribution of tensile stress in the PCD table is given through experimental results,which is well consistent with the numerical results.This finding may be significant in designing new PDC cutters with lower residual stress and high cutting behavior.展开更多
In this work, a kind of new vitrified bond based on Li2O-Al2O3-SiO2 glass ceramics was used to bond the diamond grains, which is made into grinding wheel and the cylindrical grinding process of polycrystalline diamond...In this work, a kind of new vitrified bond based on Li2O-Al2O3-SiO2 glass ceramics was used to bond the diamond grains, which is made into grinding wheel and the cylindrical grinding process of polycrystalline diamond compacts (PDCs) by using the new vitrified bond diamond grinding wheel was discussed. Several factors which influence the properties of grinding wheel such as amount of vitrified bond and the kinds and amount of stuff in grinding wheel were also investigated. It was found that the new vitrified bond can firmly combine diamond grains, when there are only diamonds and vitrified bond in the structure of grinding wheel, the longevity of the grinding wheel is about 2.5-3 times as that of resin bond grinding wheel for processing PDCs. The grinding size precision of PDCs can be improved from 4-0.03 mm to 4-0.01 mm because of larger Young's modulus of vitrified bond than resin bond. The grinding time of a PDC product can be 1.75-2.0 min from 3.25-3.5 min, so this kind of grinding wheel can save much time for processing PDCs. Also, there is hardly noise when using this new vitrified bond diamond grinding wheel to process PDCs. The amount of vitrified bond in grinding wheel influences the longevity of grinding wheel. When the size of diamond grains is 90-107 μm, the optimal amount of vitrified bond in grinding wheel is 21% (wt pct). When the amount of vitrified bond exceeds 21%, there are many pores in grinding block, which will decrease the longevity of grinding wheel. The existence of addition stuff such as Al2O3 or SiC can reduce the longevity of grinding wheel.展开更多
The effects of temperature (0-500°C) on the compressive strength,hardness,average relative density,and microstructure of Ti6Al4V powder green compacts prepared by magnetic pulse compaction were investigated.The...The effects of temperature (0-500°C) on the compressive strength,hardness,average relative density,and microstructure of Ti6Al4V powder green compacts prepared by magnetic pulse compaction were investigated.The results show that with increasing heating temperature,the compressive strength first increases and then decreases with the maximum value of 976.74 MPa at 400°C.The average relative density and hardness constantly increase,and their values reach 96.11% and HRA 69.8 at 500°C,respectively.The increase of partial welding is found among the junctions of particles inside the compacts; there is no obvious grain growth inside the compacts within the temperature range.展开更多
Ti6Al4V powder compaction was performed by using magnetic pulse compaction in air at 200℃.Effects of process parameters such as voltage,capacitance,discharge times on the microstructure,compressive strength,hardness ...Ti6Al4V powder compaction was performed by using magnetic pulse compaction in air at 200℃.Effects of process parameters such as voltage,capacitance,discharge times on the microstructure,compressive strength,hardness and relative density of compacts were investigated.The experimental results show that the relative density,hardness and compressive strength of compacted specimens increase with increasing voltage.In addition,the relative density and compressive strength of compacted specimens increase with the augmentation of capacitance in the range investigated.The relative density increases,the hardness firstly increases and then tends to be a fixed value;and the compressive strength firstly increases and then decreases from one to five times compaction.Both values of the hardness and compressive strength reach the maxima of HRA 69.1 and 1 062.31 MPa,at three times compaction,respectively.There are pores in and between particles.展开更多
In order to obtain high property powder metallurgy products, at present rotary forging process has often been used to further densify the sintered powder compact, but the densification law and property analysis have v...In order to obtain high property powder metallurgy products, at present rotary forging process has often been used to further densify the sintered powder compact, but the densification law and property analysis have very rarely been studied, therefore the densification laws of sintered powder compacts being composed of Fe 0.8%C 4.0%Cu 0.2% zinc stearate and formed as cylindrical shape by double action pressing, and then further densified as well in a rotary forging process was studied by orthogonal experiment and regression analysis. The experimental results show that the H / D ratio and the rotary forging force are major factors affecting the density of the sintered powder compacts in the rotary forging process. The effect of the H / D ratio and the rotary forging force on the density were discovered. By determining both the density and the hardness of compacts, it was found that the density distributions show no difference from the hardness distributions and that the gradients of the density and the hardness in the axial direction are larger than those in the radial direction.展开更多
Observations of microstructure of explosive compacts made of Al or Al-Li alloy powders by atomization with water,nitrogen or ultrasoic Ar gas were carried out under optical and scanning electron microscopes.The rsults...Observations of microstructure of explosive compacts made of Al or Al-Li alloy powders by atomization with water,nitrogen or ultrasoic Ar gas were carried out under optical and scanning electron microscopes.The rsults indicate that super quality explosive compact can only be obtained by powders of which the thickness of the oxide layer is less than 30 nm.展开更多
The achievement of ignition at the National Ignition Facility(NIF)has prompted a global wave of further research on inertial fusion energy(IFE).However,IFE requires a target gain G of 30-100,and it is hard to achieve ...The achievement of ignition at the National Ignition Facility(NIF)has prompted a global wave of further research on inertial fusion energy(IFE).However,IFE requires a target gain G of 30-100,and it is hard to achieve fusion at such high gain with the energy,configuration,and technical approach of the NIF.Here,we present a conceptual design for a next-generation laser driver that is applicable to multiple laser fusion schemes and provides 10 MJ,2-3 PW at 3ω(or 2ω,in which case the energy and power can be higher),and one shot per 30 min,with the aim of achieving G>30.It is also efficient,compact,and low in cost,and it has low susceptibility to laser-plasma instabilities.展开更多
The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on th...The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on the real shape of coarse particles.First,an improved Viola-Jones algorithm is employed to establish a digitalized 2D particle database for coarse particle shape evaluation and discrete modeling purposes of subgrade filler.Shape indexes of 2D subgrade filler are then computed and statistically analyzed.Finally,numerical simulations are performed to quantitatively investigate the effects of the aspect ratio(AR)and interparticle friction coefficient(μ)on the macro-and micro-mechanical compaction characteristics of subgrade filler based on the discrete element method(DEM).The results show that with the increasing AR,the coarse particles are narrower,leading to the increasing movement of fine particles during compaction,which indicates that it is difficult for slender coarse particles to inhibit the migration of fine particles.Moreover,the average displacement of particles is strongly influenced by the AR,indicating that their occlusion under power relies on particle shapes.The dis-placement and velocity of fine particles are much greater than those of the coarse particles,which shows that compaction is primarily a migration of fine particles.Under the cyclic load,the interparticle friction coefficientμhas little effect on the internal structure of the sample;under the quasi-static loads,however,the increase inμwill lead to a significant increase in the porosity of the sample.This study could not only provide a novel approach to investigate the compaction mechanism but also establish a new theoretical basis for the evaluation of intelligent subgrade compaction.展开更多
Porous sintered Ti-Ag compacts with different Ag content were fabricated by powder metallurgy. The associated hydrothermal treatment and the effect on the apatite formation were studied. The results suggested that TiO...Porous sintered Ti-Ag compacts with different Ag content were fabricated by powder metallurgy. The associated hydrothermal treatment and the effect on the apatite formation were studied. The results suggested that TiO was generated under the condition of low vacuum (1 ×10^-2 Pa) during the process of burning out the spacer-holding particles. After hydrothermal treatment, a sub-microscale porous layer was formed at the pore wall surface of the samples. The apatite-inducing ability of hydrothermal treated porous sintered Ti-Ag compacts with different Ag content was evaluated in modified simulated body fluid (SBF). And the results proved that there is a clear correlation between the apatite-inducing ability and Ag content. The higher Ag content in porous leads to the decrease of Na+ ions and basic hydroxyl (OH)b amount, resulting in the decline of apatite-inducing ability in the first stage. However, their apatite-inducing ability was not significantly different from that of Ti after two weeks SBF immersing. Hence, the ionic activity should restore with the processing of SBF soaking, as the saturation of Ag effect.展开更多
Radio frequency quadrupoles(RFQs),which are crucial components of proton injectors,significantly affect the performance of proton accelerator facilities.An RFQ with a high frequency of 714 MHz dedicated to compact pro...Radio frequency quadrupoles(RFQs),which are crucial components of proton injectors,significantly affect the performance of proton accelerator facilities.An RFQ with a high frequency of 714 MHz dedicated to compact proton injectors for medi-cal applications is designed in this study.The RFQ is designed to accelerate proton beams from 50 keV to 4 MeV within a short length of 2 m and can be matched closely with the downstream drift tube linac to capture more particles through a preliminary optimization.To develop an advanced RFQ,challenging techniques,including fabrication and tuning method,must be evaluated and verified using a prototype.An aluminium prototype is derived from the conceptual design of the RFQ and then redesigned to confirm the radio frequency performance,fabrication procedure,and feasibility of the tuning algorithm.Eventually,a new tuning algorithm based on the response matrix and least-squares method is developed,which yields favorable results based on the prototype,i.e.,the errors of the dipole and quadrupole components reduced to a low level after several tuning iterations.Benefiting from the conceptual design and techniques obtained from the prototype,the formal mechanical design of the 2-m RFQ is ready for the next manufacturing step.展开更多
Grain size is one of the determinants of grain yield,and identifying the genetic loci that control grain size will be helpful for increasing grain yield.In our previous study,a quantitative trait locus(QTL)for grain l...Grain size is one of the determinants of grain yield,and identifying the genetic loci that control grain size will be helpful for increasing grain yield.In our previous study,a quantitative trait locus(QTL)for grain length(GL),QGl.cau-2D.1,was identified from an F2 population developed from the cross between the natural(TAA10)and synthetic(XX329)allohexaploid wheat.In the present study,we mainly fine mapped and validated its genetic effects.To this end,multiple near-isogenic lines(NILs)were obtained through marker-assisted selection with TAA10 as the recurrent parent.The secondary populations derived from 25 heterozygous recombinants were used for fine mapping of QGl.cau-2D.1,and the allele from XX329 significantly increased GL,thousand-grain weight(TGW),total spikelet number per spike(TSN)and spike compactness(SC).Using NILs for XX329(2D+)and TAA10(2D−),we determined the genetic and pleiotropic effects of QGl.cau-2D.1.The target sequences were aligned with the wheat reference genome RefSeq v2.1 and spanned an~0.9 Mb genomic region.TraesCS2D03G0114900(ortholog of Os03g0594700)was predicted as the candidate gene based on whole-genome re-sequencing and expression analyses.In summary,the map-based cloning of QGl.cau-2D.1 will be useful for improving grain weight with enhanced GL and TSN.展开更多
The compaction characteristics of gravelly soil are affected by gravel hardness.To investigate the evolution and influencing mechanism of different gravel hardness on the compaction characteristics of gravelly soil,he...The compaction characteristics of gravelly soil are affected by gravel hardness.To investigate the evolution and influencing mechanism of different gravel hardness on the compaction characteristics of gravelly soil,heavy compaction tests and crushing tests were conducted on gravelly soils with gravels originated from hard,soft and extremely soft rocks.According to orthogonal experiments and variance analysis,it was found that hardness has a significant impact on the maximum dry density of gravelly soil,followed by gravel content,and lastly,moisture content.For gravel compositions with an average saturated uniaxial compressive strength less than 60 MPa,the order of compacted maximum dry density is soft gravels>hard gravels>extremely soft gravels.Each type of gravelly soil has a threshold for gravel content,with 60%for hard and soft gravels and 50%for extremely soft gravels.Beyond these thresholds,the compacted dry density decreases significantly.There is a certain interaction between hardness,gravel content,and moisture content.Higher hardness increases the influence of gravel content,whereas lower hardness increases the influence of moisture content.Gravelly soils with the coarse aggregate(CA)between 0.7 and 0.8 typically achieve higher dry densities after compaction.In addition,the prediction equations for the particle breakage rate and CA ratio in the Bailey method were proposed to estimate the compaction performance of gravelly soil preliminarily.The results further revealed the compaction mechanism of different gravelly soils and can provide reference for subgrade filling construction.展开更多
For analytic functions u,ψin the unit disk D in the complex plane and an analytic self-mapφof D,we describe in this paper the boundedness and compactness of product type operators T_(u,ψ,φ)f(z)=u(z)f(φ(z))+ψ(z)f...For analytic functions u,ψin the unit disk D in the complex plane and an analytic self-mapφof D,we describe in this paper the boundedness and compactness of product type operators T_(u,ψ,φ)f(z)=u(z)f(φ(z))+ψ(z)f'(φ(z)),z∈D,acting between weighted Bergman spaces induced by a doubling weight and a Bloch type space with a radial weight.展开更多
基金Project(2009ZX04004-031-04) supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China
文摘Compaction process simulation and residual stress prediction of green PM compact were carried out with elasto-plastic 3D FEA based on the modified Drueker-Prager Cap model in Abaqus. The model parameters of the investigated powder Distaloy AE were determined as functions of relative density through typical mechanical property tests of powder. The model was implemented as a user subroutine USDFLD. Single sided compaction of a d20 ram^5 mm disk green compact of Distaloy AE was simulated, and the residual stress of the disk after ejection was predicted with FEA. The FEA results of the compaction process and the residual stress of the disk show good agreement with compaction experiments and X-ray diffraction measurements, which validates the model and its parameters. The results indicate that the compressive residual stresses exist mainly in a thin layer on the side surface, but the residual stresses are very small on the top and bottom surfaces.
基金supported by the Natural Science of Hunan(06JJ4062)
文摘Practical experiences gained in the past several years show that the thermal residual stress(TRS) is a main cause leading polycrystalline diamond compacts(PDC) to premature failure.It is the very important to measure the TRS accurately for optimizing the interface and improving the service performance of PDC.In this paper,the TRS in 1913 flat-interface PDC was measured using improved stress-release method(ISRM). The TRS on the surface of polycrystalline diamond(PCD) table was obtained,which can be used to calculate the radial thermal residual stress(RTRS) at the interface of PCD table via a refutation process.The obtained results show that there are compressive residual stress at the PCD table interface and in the most region of PCD table surface.The exception occurs near the outer diameter of the PCD table,where the PDC begins to bend and put the PCD table surface into a tension state,an undesirable state for a brittle material.The ISRM has covered the shortage existing in traditional stress-release method,in which only finite points on the surface of PCD table can be tested for one specimen and one time.Simple as the experimental procedures are,the test results are also very accurate and reliable.This method provides the theoretical and experimental basis for testing TRS of PDC accurately.
基金This work was supported by the National Natural Science Foundation of Chira(project No.50044012)the Natural Science Foundation of Hunan Provience(project No.99JJYY20048).
文摘To successfully employ powder injection molding (PIM) as a manufacturing technique, the function of the component, design of the part, material and process should be optimized for overall processing ability of the PIM process. A comparison between the requirements of flowability and moldability and the compacts shape retention has been made in this work. There is often a contradiction between the requirements of flowability and the compacts shape retention. Many works have been done to attain good molding conditions. However, they fail to take into account the effect of some factors that satisfies good molding conditions on the compacts shape retention during debinding. This paper studies the effect of the powder-binder mixture characteristics and the molding conditions on the flowability and moldability and the shape retention of PIM compacts during debinding process so as to attain the benefits of each.
文摘Aluminium-alumina compacts with varying wt% of alumina were compacted in the pressure range of 115 - 290 MPa. Compacts prepared at 290 MPa pressure, were sintered in an argon atmosphere at 573, 673, 773 and 873 K for 1 hour. The green density, % porosity, % spring back and hardness of the green compacts were determined. Scanning Electron Microscopy was carried out to observe the morphology of pores and alumina particles in green and sintered compacts. The present study indicates that, densification of the compact increases with increasing compacting pressure and decreases with increasing alumina content. Maximum density achieved is 93% for pure aluminium compacts and decreases to 85% for Al-20 wt% alumina compacts. Grain growth of aluminium particles is noticed in the compacts after sintering at 773 and 873 K. Dispersion of fine alumina particle in the aluminium matrix occurs predominantly in the compact when sintered at 773 K which results in increase in hardness value.
基金Project(20070533113)supported by the Doctoral Foundation of Ministry of Education of China
文摘Thermal residual stresses in polycrystalline diamond compact(PDC)cutter arising from the difference in thermal expansion between the polycrystalline diamond(PCD)and the supporting tungsten carbide substrate after sintering at high pressure and high temperature were investigated using finite element simulation,laboratory tests and theoretical analysis.The obtained results show that although compressive residual stresses exist both in the interface of PCD table and in the most region of PCD table surface, the tensile residual stress,which is a fatal shortage to PDC,can also occur near the outer diameter area of PCD table,and the maximum value is 690 MPa.Distribution of tensile stress in the PCD table is given through experimental results,which is well consistent with the numerical results.This finding may be significant in designing new PDC cutters with lower residual stress and high cutting behavior.
文摘In this work, a kind of new vitrified bond based on Li2O-Al2O3-SiO2 glass ceramics was used to bond the diamond grains, which is made into grinding wheel and the cylindrical grinding process of polycrystalline diamond compacts (PDCs) by using the new vitrified bond diamond grinding wheel was discussed. Several factors which influence the properties of grinding wheel such as amount of vitrified bond and the kinds and amount of stuff in grinding wheel were also investigated. It was found that the new vitrified bond can firmly combine diamond grains, when there are only diamonds and vitrified bond in the structure of grinding wheel, the longevity of the grinding wheel is about 2.5-3 times as that of resin bond grinding wheel for processing PDCs. The grinding size precision of PDCs can be improved from 4-0.03 mm to 4-0.01 mm because of larger Young's modulus of vitrified bond than resin bond. The grinding time of a PDC product can be 1.75-2.0 min from 3.25-3.5 min, so this kind of grinding wheel can save much time for processing PDCs. Also, there is hardly noise when using this new vitrified bond diamond grinding wheel to process PDCs. The amount of vitrified bond in grinding wheel influences the longevity of grinding wheel. When the size of diamond grains is 90-107 μm, the optimal amount of vitrified bond in grinding wheel is 21% (wt pct). When the amount of vitrified bond exceeds 21%, there are many pores in grinding block, which will decrease the longevity of grinding wheel. The existence of addition stuff such as Al2O3 or SiC can reduce the longevity of grinding wheel.
文摘The effects of temperature (0-500°C) on the compressive strength,hardness,average relative density,and microstructure of Ti6Al4V powder green compacts prepared by magnetic pulse compaction were investigated.The results show that with increasing heating temperature,the compressive strength first increases and then decreases with the maximum value of 976.74 MPa at 400°C.The average relative density and hardness constantly increase,and their values reach 96.11% and HRA 69.8 at 500°C,respectively.The increase of partial welding is found among the junctions of particles inside the compacts; there is no obvious grain growth inside the compacts within the temperature range.
文摘Ti6Al4V powder compaction was performed by using magnetic pulse compaction in air at 200℃.Effects of process parameters such as voltage,capacitance,discharge times on the microstructure,compressive strength,hardness and relative density of compacts were investigated.The experimental results show that the relative density,hardness and compressive strength of compacted specimens increase with increasing voltage.In addition,the relative density and compressive strength of compacted specimens increase with the augmentation of capacitance in the range investigated.The relative density increases,the hardness firstly increases and then tends to be a fixed value;and the compressive strength firstly increases and then decreases from one to five times compaction.Both values of the hardness and compressive strength reach the maxima of HRA 69.1 and 1 062.31 MPa,at three times compaction,respectively.There are pores in and between particles.
文摘In order to obtain high property powder metallurgy products, at present rotary forging process has often been used to further densify the sintered powder compact, but the densification law and property analysis have very rarely been studied, therefore the densification laws of sintered powder compacts being composed of Fe 0.8%C 4.0%Cu 0.2% zinc stearate and formed as cylindrical shape by double action pressing, and then further densified as well in a rotary forging process was studied by orthogonal experiment and regression analysis. The experimental results show that the H / D ratio and the rotary forging force are major factors affecting the density of the sintered powder compacts in the rotary forging process. The effect of the H / D ratio and the rotary forging force on the density were discovered. By determining both the density and the hardness of compacts, it was found that the density distributions show no difference from the hardness distributions and that the gradients of the density and the hardness in the axial direction are larger than those in the radial direction.
文摘Observations of microstructure of explosive compacts made of Al or Al-Li alloy powders by atomization with water,nitrogen or ultrasoic Ar gas were carried out under optical and scanning electron microscopes.The rsults indicate that super quality explosive compact can only be obtained by powders of which the thickness of the oxide layer is less than 30 nm.
基金supported by the National Natural Science Foundation of China(Grant No.12035002).
文摘The achievement of ignition at the National Ignition Facility(NIF)has prompted a global wave of further research on inertial fusion energy(IFE).However,IFE requires a target gain G of 30-100,and it is hard to achieve fusion at such high gain with the energy,configuration,and technical approach of the NIF.Here,we present a conceptual design for a next-generation laser driver that is applicable to multiple laser fusion schemes and provides 10 MJ,2-3 PW at 3ω(or 2ω,in which case the energy and power can be higher),and one shot per 30 min,with the aim of achieving G>30.It is also efficient,compact,and low in cost,and it has low susceptibility to laser-plasma instabilities.
基金This work was supported by the National Key R&D Program‘Transportation Infrastructure’project(No.2022YFB2603400).
文摘The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on the real shape of coarse particles.First,an improved Viola-Jones algorithm is employed to establish a digitalized 2D particle database for coarse particle shape evaluation and discrete modeling purposes of subgrade filler.Shape indexes of 2D subgrade filler are then computed and statistically analyzed.Finally,numerical simulations are performed to quantitatively investigate the effects of the aspect ratio(AR)and interparticle friction coefficient(μ)on the macro-and micro-mechanical compaction characteristics of subgrade filler based on the discrete element method(DEM).The results show that with the increasing AR,the coarse particles are narrower,leading to the increasing movement of fine particles during compaction,which indicates that it is difficult for slender coarse particles to inhibit the migration of fine particles.Moreover,the average displacement of particles is strongly influenced by the AR,indicating that their occlusion under power relies on particle shapes.The dis-placement and velocity of fine particles are much greater than those of the coarse particles,which shows that compaction is primarily a migration of fine particles.Under the cyclic load,the interparticle friction coefficientμhas little effect on the internal structure of the sample;under the quasi-static loads,however,the increase inμwill lead to a significant increase in the porosity of the sample.This study could not only provide a novel approach to investigate the compaction mechanism but also establish a new theoretical basis for the evaluation of intelligent subgrade compaction.
基金supported by the National Basic Research Program of China("973 Program",Nos.2012CB619102 and 2012CB619100)National Science Fund for Distinguished Young Scholars(Grant No.51225101)+1 种基金the Fundamental Research Funds for the Central Universities(Nos.HEUCFZ1017 and HEUCFR1020)the Natural Science Foundation of Heilongjiang Province,China(No.ZD201012)
文摘Porous sintered Ti-Ag compacts with different Ag content were fabricated by powder metallurgy. The associated hydrothermal treatment and the effect on the apatite formation were studied. The results suggested that TiO was generated under the condition of low vacuum (1 ×10^-2 Pa) during the process of burning out the spacer-holding particles. After hydrothermal treatment, a sub-microscale porous layer was formed at the pore wall surface of the samples. The apatite-inducing ability of hydrothermal treated porous sintered Ti-Ag compacts with different Ag content was evaluated in modified simulated body fluid (SBF). And the results proved that there is a clear correlation between the apatite-inducing ability and Ag content. The higher Ag content in porous leads to the decrease of Na+ ions and basic hydroxyl (OH)b amount, resulting in the decline of apatite-inducing ability in the first stage. However, their apatite-inducing ability was not significantly different from that of Ti after two weeks SBF immersing. Hence, the ionic activity should restore with the processing of SBF soaking, as the saturation of Ag effect.
基金This work was supported by National Natural Science Foundation of China(No.12222513).
文摘Radio frequency quadrupoles(RFQs),which are crucial components of proton injectors,significantly affect the performance of proton accelerator facilities.An RFQ with a high frequency of 714 MHz dedicated to compact proton injectors for medi-cal applications is designed in this study.The RFQ is designed to accelerate proton beams from 50 keV to 4 MeV within a short length of 2 m and can be matched closely with the downstream drift tube linac to capture more particles through a preliminary optimization.To develop an advanced RFQ,challenging techniques,including fabrication and tuning method,must be evaluated and verified using a prototype.An aluminium prototype is derived from the conceptual design of the RFQ and then redesigned to confirm the radio frequency performance,fabrication procedure,and feasibility of the tuning algorithm.Eventually,a new tuning algorithm based on the response matrix and least-squares method is developed,which yields favorable results based on the prototype,i.e.,the errors of the dipole and quadrupole components reduced to a low level after several tuning iterations.Benefiting from the conceptual design and techniques obtained from the prototype,the formal mechanical design of the 2-m RFQ is ready for the next manufacturing step.
基金supported by the National Key Research and Development Program of China(32172069).
文摘Grain size is one of the determinants of grain yield,and identifying the genetic loci that control grain size will be helpful for increasing grain yield.In our previous study,a quantitative trait locus(QTL)for grain length(GL),QGl.cau-2D.1,was identified from an F2 population developed from the cross between the natural(TAA10)and synthetic(XX329)allohexaploid wheat.In the present study,we mainly fine mapped and validated its genetic effects.To this end,multiple near-isogenic lines(NILs)were obtained through marker-assisted selection with TAA10 as the recurrent parent.The secondary populations derived from 25 heterozygous recombinants were used for fine mapping of QGl.cau-2D.1,and the allele from XX329 significantly increased GL,thousand-grain weight(TGW),total spikelet number per spike(TSN)and spike compactness(SC).Using NILs for XX329(2D+)and TAA10(2D−),we determined the genetic and pleiotropic effects of QGl.cau-2D.1.The target sequences were aligned with the wheat reference genome RefSeq v2.1 and spanned an~0.9 Mb genomic region.TraesCS2D03G0114900(ortholog of Os03g0594700)was predicted as the candidate gene based on whole-genome re-sequencing and expression analyses.In summary,the map-based cloning of QGl.cau-2D.1 will be useful for improving grain weight with enhanced GL and TSN.
基金supported by the National Natural Science Foundation of China(No.51878127)the Fundamental Research Funds for the Central Universities(N180104013).
文摘The compaction characteristics of gravelly soil are affected by gravel hardness.To investigate the evolution and influencing mechanism of different gravel hardness on the compaction characteristics of gravelly soil,heavy compaction tests and crushing tests were conducted on gravelly soils with gravels originated from hard,soft and extremely soft rocks.According to orthogonal experiments and variance analysis,it was found that hardness has a significant impact on the maximum dry density of gravelly soil,followed by gravel content,and lastly,moisture content.For gravel compositions with an average saturated uniaxial compressive strength less than 60 MPa,the order of compacted maximum dry density is soft gravels>hard gravels>extremely soft gravels.Each type of gravelly soil has a threshold for gravel content,with 60%for hard and soft gravels and 50%for extremely soft gravels.Beyond these thresholds,the compacted dry density decreases significantly.There is a certain interaction between hardness,gravel content,and moisture content.Higher hardness increases the influence of gravel content,whereas lower hardness increases the influence of moisture content.Gravelly soils with the coarse aggregate(CA)between 0.7 and 0.8 typically achieve higher dry densities after compaction.In addition,the prediction equations for the particle breakage rate and CA ratio in the Bailey method were proposed to estimate the compaction performance of gravelly soil preliminarily.The results further revealed the compaction mechanism of different gravelly soils and can provide reference for subgrade filling construction.
文摘For analytic functions u,ψin the unit disk D in the complex plane and an analytic self-mapφof D,we describe in this paper the boundedness and compactness of product type operators T_(u,ψ,φ)f(z)=u(z)f(φ(z))+ψ(z)f'(φ(z)),z∈D,acting between weighted Bergman spaces induced by a doubling weight and a Bloch type space with a radial weight.