期刊文献+
共找到144篇文章
< 1 2 8 >
每页显示 20 50 100
Silk-based nerve guidance conduits with macroscopic holes modulate the vascularization of regenerating rat sciatic nerve
1
作者 Carina Hromada Patrick Heimel +10 位作者 Markus Kerbl LászlóGál Sylvia Nürnberger Barbara Schaedl James Ferguson Nicole Swiadek Xavier Monforte Johannes C.Heinzel Antal Nógrádi Andreas H.Teuschl-Woller David Hercher 《Neural Regeneration Research》 SCIE CAS 2025年第6期1789-1800,共12页
Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the ... Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the use of tubular nerve guidance conduits(tNGCs). However, the use of tNGCs results in poor functional recovery and central necrosis of the regenerating tissue, which limits their application to short nerve lesion defects(typically shorter than 3 cm). Given the importance of vascularization in nerve regeneration, we hypothesized that enabling the growth of blood vessels from the surrounding tissue into the regenerating nerve within the tNGC would help eliminate necrotic processes and lead to improved regeneration. In this study, we reported the application of macroscopic holes into the tubular walls of silk-based tNGCs and compared the various features of these improved silk^(+) tNGCs with the tubes without holes(silk^(–) tNGCs) and autologous nerve transplants in an 8-mm sciatic nerve defect in rats. Using a combination of micro-computed tomography and histological analyses, we were able to prove that the use of silk^(+) tNGCs induced the growth of blood vessels from the adjacent tissue to the intraluminal neovascular formation. A significantly higher number of blood vessels in the silk^(+) group was found compared with autologous nerve transplants and silk^(–), accompanied by improved axon regeneration at the distal coaptation point compared with the silk^(–) tNGCs at 7 weeks postoperatively. In the 15-mm(critical size) sciatic nerve defect model, we again observed a distinct ingrowth of blood vessels through the tubular walls of silk^(+) tNGCs, but without improved functional recovery at 12 weeks postoperatively. Our data proves that macroporous tNGCs increase the vascular supply of regenerating nerves and facilitate improved axonal regeneration in a short-defect model but not in a critical-size defect model. This study suggests that further optimization of the macroscopic holes silk^(+) tNGC approach containing macroscopic holes might result in improved grafting technology suitable for future clinical use. 展开更多
关键词 axon regeneration blood vessel functional recovery macroporous nerve lesion peripheral nerve repair sciatic nerve silk-based nerve guidance conduit VASCULARIZATION
下载PDF
Reduced graphene oxide-embedded nerve conduits loaded with bone marrow mesenchymal stem cell-derived extracellular vesicles promote peripheral nerve regeneration 被引量:1
2
作者 Wei Zhang Xing-Xing Fang +2 位作者 Qi-Cheng Li Wei Pi Na Han 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第1期200-206,共7页
We previously combined reduced graphene oxide(rGO)with gelatin-methacryloyl(GelMA)and polycaprolactone(PCL)to create an rGO-GelMA-PCL nerve conduit and found that the conductivity and biocompatibility were improved.Ho... We previously combined reduced graphene oxide(rGO)with gelatin-methacryloyl(GelMA)and polycaprolactone(PCL)to create an rGO-GelMA-PCL nerve conduit and found that the conductivity and biocompatibility were improved.However,the rGO-GelMA-PCL nerve conduits differed greatly from autologous nerve transplants in their ability to promote the regeneration of injured peripheral nerves and axonal sprouting.Extracellular vesicles derived from bone marrow mesenchymal stem cells(BMSCs)can be loaded into rGO-GelMA-PCL nerve conduits for repair of rat sciatic nerve injury because they can promote angiogenesis at the injured site.In this study,12 weeks after surgery,sciatic nerve function was measured by electrophysiology and sciatic nerve function index,and myelin sheath and axon regeneration were observed by electron microscopy,immunohistochemistry,and immunofluorescence.The regeneration of microvessel was observed by immunofluorescence.Our results showed that rGO-GelMA-PCL nerve conduits loaded with BMSC-derived extracellular vesicles were superior to rGO-GelMA-PCL conduits alone in their ability to increase the number of newly formed vessels and axonal sprouts at the injury site as well as the recovery of neurological function.These findings indicate that rGO-GelMA-PCL nerve conduits loaded with BMSC-derived extracellular vesicles can promote peripheral nerve regeneration and neurological function recovery,and provide a new direction for the curation of peripheral nerve defect in the clinic. 展开更多
关键词 ANGIOGENESIS AXON bone mesenchymal stem cell extracellular vesicles hybrid nanofibers myelin sheath nerve conduit neurological function peripheral nerve injury reduced graphene oxide
下载PDF
Chitosan conduits enriched with fibrin-collagen hydrogel with or without adipose-derived mesenchymal stem cells for the repair of 15-mm-long sciatic nerve defect
3
作者 Marwa El Soury óscar Darío García-García +6 位作者 Isabella Tarulli Jesús Chato-Astrain Isabelle Perroteau Stefano Geuna Stefania Raimondo Giovanna Gambarotia Víctor Carriel 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1378-1385,共8页
Hollow conduits of natural or synthetic origins have shown acceptable regeneration results in short nerve gap repair;however,results are still not comparable with the current gold standard technique“autografts”.Holl... Hollow conduits of natural or synthetic origins have shown acceptable regeneration results in short nerve gap repair;however,results are still not comparable with the current gold standard technique“autografts”.Hollow conduits do not provide a successful regeneration outcome when it comes to critical nerve gap repair.Enriching the lumen of conduits with different extracellular materials and cells could provide a better biomimicry of the natural nerve regenerating environment and is expected to ameliorate the conduit performance.In this study,we evaluated nerve regeneration in vivo using hollow chitosan conduits or conduits enriched with fibrin-collagen hydrogels alone or with the further addition of adipose-derived mesenchymal stem cells in a 15 mm rat sciatic nerve transection model.Unexpected changes in the hydrogel consistency and structural stability in vivo led to a failure of nerve regeneration after 15 weeks.Nevertheless,the molecular assessment in the early regeneration phase(7,14,and 28 days)has shown an upregulation of useful regenerative genes in hydrogel enriched conduits compared with the hollow ones.Hydrogels composed of fibrin-collagen were able to upregulate the expression of soluble NRG1,a growth factor that plays an important role in Schwann cell transdifferentiation.The further enrichment with adipose-derived mesenchymal stem cells has led to the upregulation of other important genes such as ErbB2,VEGF-A,BDNF,c-Jun,and ATF3. 展开更多
关键词 adipose-derived stem cells chitosan conduit fibrin and collagen hydrogel nerve regeneration nerve repair neuregulin 1 peripheral nerve sciatic nerve
下载PDF
Hypoxic pre-conditioned adipose-derived stem/progenitor cells embedded in fibrin conduits promote peripheral nerve regeneration in a sciatic nerve graft model
4
作者 Julius M.Mayer Christian Krug +4 位作者 Maximilian M.Saller Annette Feuchtinger Riccardo E.Giunta Elias Volkmer Thomas Holzbach 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期652-656,共5页
Recent results emphasize the supportive effects of adipose-derived multipotent stem/progenitor cells(ADSPCs)in peripheral nerve recovery.Cultivation under hypoxia is considered to enhance the release of the regenerati... Recent results emphasize the supportive effects of adipose-derived multipotent stem/progenitor cells(ADSPCs)in peripheral nerve recovery.Cultivation under hypoxia is considered to enhance the release of the regenerative potential of ADSPCs.This study aimed to examine whether peripheral nerve regeneration in a rat model of autologous sciatic nerve graft benefits from an additional custom-made fibrin conduit seeded with hypoxic pre-conditioned(2%oxygen for 72 hours)autologous ADSPCs(n=9).This treatment mode was compared with three others:fibrin conduit seeded with ADSPCs cultivated under normoxic conditions(n=9);non-cell-carrying conduit(n=9);and nerve autograft only(n=9).A 16-week follow-up included functional testing(sciatic functional index and static sciatic index)as well as postmortem muscle mass analyses and morphometric nerve evaluations(histology,g-ratio,axon density,and diameter).At 8 weeks,the hypoxic pre-conditioned group achieved significantly higher sciatic functional index/static sciatic index scores than the other three groups,indicating faster functional regeneration.Furthermore,histologic evaluation showed significantly increased axon outgrowth/branching,axon density,remyelination,and a reduced relative connective tissue area.Hypoxic pre-conditioned ADSPCs seeded in fibrin conduits are a promising adjunct to current nerve autografts.Further studies are needed to understand the underlying cellular mechanism and to investigate a potential application in clinical practice. 展开更多
关键词 adipose-derived progenitor cells adipose-derived multipotent stem/progenitor cell autologous nerve graft fibrin conduit hypoxia hypoxic pre-conditioning nerve defect nerve tissue engineering peripheral nerve regeneration regenerative medicine
下载PDF
Therapeutic strategies for peripheral nerve injury: decellularized nerve conduits and Schwann cell transplantation 被引量:6
5
作者 Gong-Hai Han Jiang Peng +4 位作者 Ping Liu Xiao Ding Shuai Wei Sheng Lu Yu Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第8期1343-1351,共9页
In recent years, the use of Schwann cell transplantation to repair peripheral nerve injury has attracted much attention. Animal-based studies show that the transplantation of Schwann cells in combination with nerve sc... In recent years, the use of Schwann cell transplantation to repair peripheral nerve injury has attracted much attention. Animal-based studies show that the transplantation of Schwann cells in combination with nerve scaffolds promotes the repair of injured peripheral nerves. Autologous Schwann cell transplantation in humans has been reported recently. This article reviews current methods for removing the extracellular matrix and analyzes its composition and function. The development and secretory products of Schwann cells are also reviewed. The methods for the repair of peripheral nerve injuries that use myelin and Schwann cell transplantation are assessed. This survey of the literature data shows that using a decellularized nerve conduit combined with Schwann cells represents an effective strategy for the treatment of peripheral nerve injury. This analysis provides a comprehensive basis on which to make clinical decisions for the repair of peripheral nerve injury. 展开更多
关键词 NERVE REGENERATION peripheral NERVE injury NERVE conduits DECELLULARIZATION EXTRACELLULAR matrix Schwann cell neural REGENERATION
下载PDF
Sustained release of exosomes loaded into polydopamine-modified chitin conduits promotes peripheral nerve regeneration in rats 被引量:4
6
作者 Ci Li Song-Yang Liu +5 位作者 Meng Zhang Wei Pi Bo Wang Qi-Cheng Li Chang-Feng Lu Pei-Xun Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第9期2050-2057,共8页
Exosomes derived from mesenchymal stem cells are of therapeutic interest because of their important role in intracellular communication and biological regulation.On the basis of previously studied nerve conduits,we de... Exosomes derived from mesenchymal stem cells are of therapeutic interest because of their important role in intracellular communication and biological regulation.On the basis of previously studied nerve conduits,we designed a polydopamine-modified chitin conduit loaded with mesenchymal stem cell-derived exosomes that release the exosomes in a sustained and stable manner.In vitro experiments revealed that rat mesenchymal stem cell-derived exosomes enhanced Schwann cell proliferation and secretion of neurotrophic and growth factors,increased the expression of Jun and Sox2 genes,decreased the expression of Mbp and Krox20 genes in Schwann cells,and reprogrammed Schwann cells to a repair phenotype.Furthermore,mesenchymal stem cell-derived exosomes promoted neurite growth of dorsal root ganglia.The polydopamine-modified chitin conduits loaded with mesenchymal stem cell-derived exosomes were used to bridge 2 mm rat sciatic nerve defects.Sustained release of exosomes greatly accelerated nerve healing and improved nerve function.These findings confirm that sustained release of mesenchymal stem cell-derived exosomes loaded into polydopamine-modified chitin conduits promotes the functional recovery of injured peripheral nerves. 展开更多
关键词 EXOSOME mesenchymal stem cells modification strategy nerve conduits peripheral nerve injury peripheral nerve regeneration POLYDOPAMINE reprogramming state Schwann cells sustained release
下载PDF
Application of custom anatomy-based nerve conduits on rabbit sciatic nerve defects: in vitro and in vivo evaluations 被引量:1
7
作者 Yamuhanmode·Alike Maimaiaili·Yushan +6 位作者 Ajimu·Keremu Alimujiang·Abulaiti Zhen-Hui Liu Wei Fu Li-Wei Yan Aihemaitijiang·Yusufu Qing-Tang Zhu 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第12期2173-2182,共10页
The intermingling of regenerated nerve fibers inside nerve grafts is the main reason for mismatched nerve fibers. This is one of the key factors affecting limb function recovery after nerve injury. Previous research h... The intermingling of regenerated nerve fibers inside nerve grafts is the main reason for mismatched nerve fibers. This is one of the key factors affecting limb function recovery after nerve injury. Previous research has shown that the accuracy of axon regeneration can be improved by a bionic structural implant. To this aim, iodine and freeze-drying high-resolution micro-computed tomography was performed to visualize the 3D topography of the New Zealand rabbit sciatic nerve (25 mm). A series of 1-, 2-, 3-, and 4-custom anatomy-based nerve conduits (CANCs) were fabricated based on the anatomical structure of the nerve fascicle. The match index, luminal surface, and mechanical properties of CANCs were evaluated before implanting in a 10-mm gap of the sciatic nerve. Recovery was evaluated by histomorphometric analyses, electrophysiological study, gastrocnemius muscle weight recovery ratio, and behavioral assessments at 12 and 24 weeks postoperatively. The accuracy of nerve regeneration was determined by changes in fluorescence-labeled profile number during simultaneous retrograde tracing. Our results showed that the optimal preprocessing condition for high-resolution micro-computed tomography visualization was treatment of the sciatic nerve with 40% Lugol’s solution for 3 days followed by lyophilization for 2 days. In vitro experiments demonstrated that the match index was highest in the 3-CANC group, followed by the 2-, 1-, and 4-CANC groups. The luminal surface was lowest in the 1-CANC group. Mechanical properties (transverse compressive and bending properties) were higher in the 3- and 4-CANC groups than in the 1-CANC group. In vivo experiments demonstrated that the recovery (morphology of regenerated fibers, compound muscle action potential, gastrocnemius muscle weight recovery ratio, pain-related autotomy behaviors, and range of motion) in the 3-CANC group was superior to the other CANC groups, and achieved the same therapeutic effect as the autograft. The simultaneous retrograde tracing results showed that the percentages of double-labeled profiles of the 2-, 3-, and 4-CANC groups were comparatively lower than that of the 1-CANC group, which indicates that regenerated nerve fascicles were less intermingled in the 2-, 3-, and 4-CANC groups. These findings demonstrate that the visualization of the rabbit sciatic nerve can be achieved by iodine and freeze-drying high-resolution micro-computed tomography, and that this method can be used to design CANCs with different channels that are based on the anatomical structure of the nerve. Compared with the 1-CANC, 3-CANC had a higher match index and luminal surface, and improved the accuracy of nerve regeneration by limiting the intermingling of the regenerated fascicles. All procedures were approved by the Animal Care and Use Committee, Xinjiang Medical University, China on April 4, 2017 (ethics approval No. IACUC20170315-02). 展开更多
关键词 NERVE REGENERATION NERVE conduits mismatch iodine and FREEZE-DRYING high-resolution micro-computed tomography bio-mimic CUSTOM RABBIT SCIATIC NERVE in vitro in vivo neural REGENERATION
下载PDF
Ultrasound imaging of chitosan nerve conduits that bridge sciatic nerve defects in rats 被引量:1
8
作者 Xiaoyang Chen Yifei Yin +4 位作者 Tingting Zhang Yahong Zhao Yumin Yang Xiaomei Yu Hongkui Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第14期1386-1388,共3页
The repair of peripheral nerve injuries with autologous nerve remains the gold standard (Wang et al., 2005; Yao et al., 2010; Deal et al., 2012; Kriebel et al., 2014; Liu et al., 2014; Tamaki et al., 2014; Yu et al.,... The repair of peripheral nerve injuries with autologous nerve remains the gold standard (Wang et al., 2005; Yao et al., 2010; Deal et al., 2012; Kriebel et al., 2014; Liu et al., 2014; Tamaki et al., 2014; Yu et al., 2014; Zhu and Lou, 2014). With advances in tissue engineering and biomaterials, tissue-engineered nerve conduits with various biomaterials and structures, such as collagen and chitosan nerve conduits, have already been used in the clinic as alternatives to autologous nerve in the repair of peripheral nerve injury (Wang et al., 2012; Svizenska et al., 2013; Eppenberger et al., 2014; Gu et al., 2014; Koudehi et al., 2014; MoyaDiaz et al., 2014; Novajra et al., 2014; Okamoto et al., 2014; Shea et al., 2014; Singh et al., 2014; Tamaki et al., 2014; Yu et al., 2014). Therefore, new simple and effective methods 展开更多
关键词 Ultrasound imaging of chitosan nerve conduits that bridge sciatic nerve defects in rats
下载PDF
Influence of immobilization and sensory re-education on the sensory recovery after reconstruction of digital nerves with direct suture or muscle-in-vein conduits
9
作者 Theodora Manoli Jennifer Lynn Schiefer +2 位作者 Lukas Schulz Thomas Fuchsberger Hans-Eberhard Schaller 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第2期338-344,共7页
The influence of duration of immobilization and postoperative sensory re-education on the final outcome after reconstruction of digital nerves with direct suture or muscle-in-vein conduits was investigated. The final ... The influence of duration of immobilization and postoperative sensory re-education on the final outcome after reconstruction of digital nerves with direct suture or muscle-in-vein conduits was investigated. The final sensory outcome of 35 patients with 41 digital nerve injuries, who either underwent a direct suture(DS) or a nerve reconstruction with muscle-in-vein conduits(MVC), was assessed the earliest 12 months postoperatively using static and moving two-point discrimination as well as Semmes-Weinstein monofilaments. There was no significant difference in sensory recovery in cases with an immobilization of 3–7 days versus 10 days in the DS or MVC group. Moreover, no statistically significant difference in sensory recovery was found in cases receiving postoperative sensory re-education versus those not receiving in the DS or MVC group. An early mobilization does not seem to have a negative impact on the final outcome after digital nerve reconstruction. The effect of sensory re-education after digital nerve reconstruction should be reconsidered. 展开更多
关键词 nerve regeneration peripheral nerve digital nerve sensory re-education IMMOBILIZATION digital direct suture muscle-in-vein conduits
下载PDF
Torsion properties of poly (glycolide-co-L-lactide) biodegradable braided regeneration conduits for peripheral nerve repair
10
作者 Weihua Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第5期342-347,共6页
BACKGROUND: Poly (glycolide-co-L-lactide) (PGLA) braided regeneration conduits have been shown to be biocompatible for the repair of damaged nerve. Mechanical properties, such as radial compression and torsion, g... BACKGROUND: Poly (glycolide-co-L-lactide) (PGLA) braided regeneration conduits have been shown to be biocompatible for the repair of damaged nerve. Mechanical properties, such as radial compression and torsion, greatly influence nerve regeneration and functional recovery. OBJECTIVE: To observe the influence of conduit parameters and coating methods on torsion properties in an in vitro-degradation environment and at normal temperature. DESIGN, TIME AND SE'I-FING: An in vitro, comparative study using repeated measures was performed at the College of Textiles, Donghua University, China from January 2005 to December 2007. MATERIALS: PGLA fiber and yarn (Shanghai Bio-TianQing, China), as well as torsion property testing instrument (LaiZhou Electronic Instrument, China), were used in the present study. METHODS: A total of 16 types of conduits were constructed according to braiding structures (regular/triaxial), angles (50°/55°/60°/65°)nd coating methods (coated/uncoated). At normal temperature, torsion properties of all conduits were tested at a predefined constant angle of 90°. Coated and uncoated conduits, which were triaxial and 65°, were incubated in a 5% CO2 incubator at 37 ℃ to simulate an in vitro degradation environment, and then torsion properties were tested at 4, 7, 11, 14, 17, 21,24, and 28 days in culture. MAIN OUTCOME MEASURES: Maximal torsion strength and torsion strength-torsion angle curve of conduits at normal temperature, as well as torsion strength-torsion angle curve, loss of torsion strength, and change in maximal torsion strength in an in vitro degradation environment. RESULTS: At normal temperature, the torsion properties of the triaxial structure were superior to the regular structure. Coated conduits performed better than uncoated ones, and the larger braiding angles exhibited superior torsion properties (P 〈 0.05). In the in vitro degradation environment, with degradation time, torsion strength of uncoated conduits was deceased gradually and the loss of torsion strength was increased fast. Torsion strength of coated conduits was increased first and decreased afterwards; the loss of torsion strength was decreased slowly till 14 days; both became identical after 14 days (P 〉 0.05). CONCLUSION: Torsion properties of coated conduits with a triaxial structure and large braiding angle were superior to uncoated conduits with regular structures and small braiding angles. 展开更多
关键词 braiding angle braiding structure biodegradable braided regeneration conduits torsion properties in vitro degradation
下载PDF
Evaluating nerve guidance conduits for peripheral nerve injuries:a novel normalization method
11
作者 Munish B.Shah Wei Chang Xiaojun Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第22期1959-1960,共2页
The peripheral nervous system (PNS) is composed of the nerves and ganglia outside of the brain and spinal cord whose primary function is to connect the central nervous system to the limbs and organs. A peripheral ne... The peripheral nervous system (PNS) is composed of the nerves and ganglia outside of the brain and spinal cord whose primary function is to connect the central nervous system to the limbs and organs. A peripheral nerve injury (PNI) is damage to the nerves and/or its surrounding tissue. These injuries can affect up to 5% of patients that are hospitalized for trauma (Taylor et al., 2008) and over 50,000 surgical repair procedures are performed annually in the United States alone (Evans, 2001). 展开更多
关键词 RRR Evaluating nerve guidance conduits for peripheral nerve injuries NGC PNI
下载PDF
PDLLA/β-TCP/HA/CHS/NGF Sustained-release Conduits for Peripheral Nerve Regeneration
12
作者 闫秀美 WANG Jing +8 位作者 HE Qundi 徐海星 TAO Junyan KORAL Kelly LI Kebi XU Jingyi WEN Jing HUANG Zhijun 许沛虎 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第4期600-606,共7页
Using nerve guide conduits (NGCs) to promote the regeneration of PNI is a feasible alternative to autograft.Compared with NGCs made of single material,composite NGCs have a greater development prospect.Our previous re... Using nerve guide conduits (NGCs) to promote the regeneration of PNI is a feasible alternative to autograft.Compared with NGCs made of single material,composite NGCs have a greater development prospect.Our previous research has confirmed that poly(D,L-lactic acid)/β-tricalcium phosphate/hyaluronic acid/chitosan/nerve growth factor (PDLLA/β-TCP/HA/CHS/NGF) NGCs have excellent physical and chemical properties,which can slowly release NGF and support cell adhesion and proliferation.In this study,PDLLA/β-TCP/HA/CHS/NGF NGCs were prepared and used to bridge a 10 mm sciatic nerve defect in 200-250 g Sprague-Dawley (SD) rat to verify the performance of the NGCs in vivo.Substantial improvements in nerve regeneration were observed after using the PDLLA/β-TCP/HA/CHS/NGF NGCs based on gross post-operation observation,triceps wet weight analysis and nerve histological assessment.In vivo studies illustrate that the PDLLA/β-TCP/HA/CHS/NGF sustained-release NGCs can effectively promote peripheral nerve regeneration,and the effect is similar to that of autograft. 展开更多
关键词 SUSTAINED-RELEASE composite nerve conduits peripheral nerve regeneration
下载PDF
Tubular conduits,cell-based therapy and exercise to improve peripheral nerve regeneration
13
作者 Camila Oliveira Goulart Ana Maria Blanco Martinez 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第4期565-567,共3页
Peripheral nerve injuries (PNI) are a major clinical prob- lem. In general, PNI results from motor vehicle accidents, lacerations with sharp objects, penetrating trauma (gunshot wounds) and stretching or crushing ... Peripheral nerve injuries (PNI) are a major clinical prob- lem. In general, PNI results from motor vehicle accidents, lacerations with sharp objects, penetrating trauma (gunshot wounds) and stretching or crushing trauma and fractures. It is estimated that PNI occur in 2.8% of trauma patients and this number reaches 5% if plexus and root lesions are in- cluded. However, due to lack of recent epidemiological stud- ies, these data probably underestimate the actual number of nerve injuries 展开更多
关键词 CELL Tubular conduits cell-based therapy and exercise to improve peripheral nerve regeneration PNI
下载PDF
Roles of reinforced nerve conduits and low-level laser phototherapy for long gap peripheral nerve repair
14
作者 Bai-Shuan Liu Tsung-Bin Huang Shiuh-Chuan Chan 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第12期1180-1182,共3页
Peripheral nerve injuries are common in clinical practice because of traumas such as crushing and sectioning. Lesions of the nerve structure result in lost or diminished sensitivity and/or motor activity in the innerv... Peripheral nerve injuries are common in clinical practice because of traumas such as crushing and sectioning. Lesions of the nerve structure result in lost or diminished sensitivity and/or motor activity in the innervated territory. The degree of lesion depends on the specific nerve involved, the magnitude and type of pres- sure exerted, and the duration of the compression. The results of such injuries commonly include axonal degeneration and retro- grade degeneration of the corresponding neurons in the spinal medulla, followed by very slow regeneration (Rochkind et al., 2001). The adverse effects on the daily activities of patients with a peripheral nerve injury are a determining factor in establishing the goals of early recovery (Rodriguez et al., 2004). 展开更多
关键词 Roles of reinforced nerve conduits and low-level laser phototherapy for long gap peripheral nerve repair GGT
下载PDF
Comparison of short- with long-term regeneration results after digital nerve reconstruction with musclein-vein conduits
15
作者 Jennifer Lynn Schiefer Lukas Schulz +3 位作者 Rebekka Rath Stéphane Stahl Hans-Eberhard Schaller Theodora Manoli 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第10期1674-1677,共4页
Muscle-in-vein conduits are used alternatively to nerve grafts for bridging nerve defects. The purpose of this study was to examine short- and long-term regeneration results after digital nerve reconstruction with mus... Muscle-in-vein conduits are used alternatively to nerve grafts for bridging nerve defects. The purpose of this study was to examine short- and long-term regeneration results after digital nerve reconstruction with muscle-in-vein conduits. Static and moving two-point discriminations and Semmes-Weinstein Monofilaments were used to evaluate sensory recovery 6–12 months and 14–35 months after repair of digital nerves with muscle-in-vein in 7 cases. Both follow-ups were performed after clinical signs of progressing regeneration disappeared. In 4 of 7 cases, a further recovery of both two-point discriminations and in another case of only the static two-point discrimination of 1–3 mm could be found between the short-term and long-term follow-up examination. Moreover, a late recovery of both two-point discriminations was demonstrated in another case. Four of 7 cases showed a sensory improvement by one Semmes-Weinstein Monofilaments. This pilot study suggests that sensory recovery still takes place even when clinical signs of progressing regeneration disappear. 展开更多
关键词 peripheral nerve regeneration muscle-in-vein conduits digital nerves sensory recovery Semmes-Weinstein two-point discrimination outcome short-term long-term
下载PDF
Growth Factors and Supporting Cells of Nerve Conduits for Peripheral Nerve Regeneration
16
作者 Yang XIANG Zhi-Wu CHEN +3 位作者 Jun-Shui ZHENG Zhuan YANG Guang-Hao LIN Peng WEI 《Chinese Journal Of Plastic and Reconstructive Surgery》 2019年第4期46-54,共9页
Peripheral nerve injury is a common disease that endangers human health.There is a variety of methods to repair peripheral nerve injury,the current"gold standard"approach is autograft,however it still faces ... Peripheral nerve injury is a common disease that endangers human health.There is a variety of methods to repair peripheral nerve injury,the current"gold standard"approach is autograft,however it still faces many disadvantages.A new choice is the use of artificial nerve conduits,which are tubular structures and are designed to bridge nerve gaps.In order to bridge longer nerve gaps and gain ideal nerve regeneration effects,multiple technologies have been developed to the design of nerve conduits,such as selecting sutible materials,supplementing growth factors,transplanting supporting cells and so on.This review mainly introduce current progess in growth factors supplementation and supporting cells transplantation technology of nerve conduits. 展开更多
关键词 peripheral nerve injury nerve conduits growth factors supporting cells
下载PDF
Study on repair of peripheral Nerveby silicone conduits
17
《Chinese Journal of Biomedical Engineering(English Edition)》 2001年第2期60-62,共3页
关键词 Study on repair of silicone conduits WGA
下载PDF
A study on peripheral nerve regeneration via biomimetic conduits loadedwith Schwann cells and nerve growth factor
18
《Chinese Journal of Biomedical Engineering(English Edition)》 2001年第2期53-55,共3页
关键词 NGF A study on peripheral nerve regeneration via biomimetic conduits loadedwith Schwann cells and nerve growth factor SC
下载PDF
Chitosan conduits combined with nerve growth factor microspheres repair facial nerve defects 被引量:21
19
作者 Huawei Liu Weisheng Wen +5 位作者 Min Hu Wenting Bi Lijie Chen Sanxia Liu Peng Chen Xinying Tan 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第33期3139-3147,共9页
Microspheres containing nerve growth factor for sustained release were prepared by a compound method, and implanted into chitosan conduits to repair 10-mm defects on the right buccal branches of the facial nerve in ra... Microspheres containing nerve growth factor for sustained release were prepared by a compound method, and implanted into chitosan conduits to repair 10-mm defects on the right buccal branches of the facial nerve in rabbits. In addition, chitosan conduits combined with nerve growth factor or normal saline, as well as autologous nerve, were used as controls. At 90 days post-surgery, the muscular atrophy on the right upper lip was more evident in the nerve growth factor and normal sa- line groups than in the nerve growth factor-microspheres and autologous nerve groups. Electro- physiological analysis revealed that the nerve conduction velocity and amplitude were significantly higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. Moreover, histological observation illustrated that the di- ameter, number, alignment and myelin sheath thickness of myelinated nerves derived from rabbits were higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. These findings indicate that chitosan nerve conduits com- bined with microspheres for sustained release of nerve growth factor can significantly improve facial nerve defect repair in rabbits. 展开更多
关键词 neural regeneration peripheral newe injury tissue engineering newe growth factor microspherefacial nerve defect CHITOSAN nerve conduit grants-suppoSed paper NEUROREGENERATION
下载PDF
Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects 被引量:21
20
作者 Yang Wang Zheng-wei Li +2 位作者 Min Luo Ya-jun Li Ke-qiang Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第6期965-971,共7页
The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some respects, but few data com... The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some respects, but few data comparing the biomechanical factors related to the sciatic nerve are available. In the present study, rabbit models of 10-mm sciatic nerve defects were prepared. The rabbit models were repaired with autologous nerve, a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells, or a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel. After 24 weeks, mechanical testing was performed to determine the stress relaxation and creep parameters. Following sciatic nerve injury, the magnitudes of the stress decrease and strain increase at 7,200 seconds were largest in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group, followed by the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group, and then the autologous nerve group. Hematoxylin-eosin staining demonstrated that compared with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group and the autologous nerve group, a more complete sciatic nerve regeneration was found, including good myelination, regularly arranged nerve fibers, and a completely degraded and resorbed conduit, in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group. These results indicate that bridging 10-mm conduit + bone marrow mesenchymal stem sciatic nerve defects with a polylactic glycolic acid cells + extracellular matrix gel construct increases the stress relaxation under a constant strain, reducing anastomotic tension. Large elongations under a constant physiological load can limit the anastomotic opening and shift, which is beneficial for the regeneration and functional reconstruction of sciatic nerve. Better regeneration was found with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel grafts than with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells grafts and the autologous nerve grafts. 展开更多
关键词 nerve regeneration peripheral nerve injury rabbits sciatic nerve injury autologous nerye repair polylactic glycolic acid conduit extracellular matrix gel grafting stress relaxation creep viscoelasticity HISTOMORPHOLOGY ELECTROPHYSIOLOGY neural regeneration
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部