期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
Management of Traumatic Brain Injuries at the Kara Regional Hospital
1
作者 Tamegnon Dossouvi Tchaa Hodabalo Towoezim +3 位作者 Abdel Kader Moumouni Kokou Kanassoua Iroukora Kassegne Ekoue David Dosseh 《Surgical Science》 2024年第2期19-27,共9页
Introduction: Traumatic Brain Injury (TBI) is a major public health problem causing significant morbidity and mortality in young adults. This study aimed to describe the epidemiological, diagnostic, therapeutic, and e... Introduction: Traumatic Brain Injury (TBI) is a major public health problem causing significant morbidity and mortality in young adults. This study aimed to describe the epidemiological, diagnostic, therapeutic, and evolutionary aspects of TBI. Materials and Methods: This was a prospective, descriptive study conducted from 1 April 2022 to 31 March 2023 on patients admitted to and treated for cranioencephalic trauma in the General Surgery department of Kara Regional Hospital. Results: Eighty-three (83) patients with cranioencephalic trauma were managed out of 773 patients admitted to the department during the study period. The mean age was 34 ± 14.98 years and the sex ratio was 3.6 in favour of men. Motorbike taxi drivers were the social group most affected (n = 33, 40%). The causes of trauma were dominated by public road accidents (n = 80;96%). TBI was mild (n = 40;48%), moderate (n = 35;42%) and severe (n = 8;10%). Cerebral CT scans were performed in 19 patients (23%). Cerebral contusion (n = 4) was the most frequent cerebral lesion. Six patients (7%) with severe head injuries were transferred to Kara University Hospital. Six deaths (7%) occurred in patients with severe head injuries. The main sequelae were intermittent headaches in all patients reviewed, and memory problems (6%). Conclusion: Traumatic brain injuries are common at Kara Regional Hospital. Severe cranial trauma is less frequent but leads to death because of financial difficulties and limited technical facilities. 展开更多
关键词 Traumatic Brain Injury Road Accident MOTORCYCLIST Cerebral Contusion TOGO
下载PDF
Assessment of hindlimb motor recovery affer severe thoracic spinal cord injury in rats: classification of CatWalk XT■ gait analysis parameters 被引量:1
2
作者 Guoli Zheng Hao Zhang +6 位作者 Mohamed Tail Hao Wang Johannes Walter Thomas Skutella Andreas Unterberg Klaus Zweckberger Alexander Younsi 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期1084-1089,共6页
Assessment of locomotion recovery in preclinical studies of experimental spinal cord injury remains challenging. We studied the CatWalk XT■gait analysis for evaluating hindlimb functional recovery in a widely used an... Assessment of locomotion recovery in preclinical studies of experimental spinal cord injury remains challenging. We studied the CatWalk XT■gait analysis for evaluating hindlimb functional recovery in a widely used and clinically relevant thoracic contusion/compression spinal cord injury model in rats. Rats were randomly assigned to either a T9 spinal cord injury or sham laminectomy. Locomotion recovery was assessed using the Basso, Beattie, and Bresnahan open field rating scale and the CatWalk XT■gait analysis. To determine the potential bias from weight changes, corrected hindlimb(H) values(divided by the unaffected forelimb(F) values) were calculated. Six weeks after injury, cyst formation, astrogliosis, and the deposition of chondroitin sulfate glycosaminoglycans were assessed by immunohistochemistry staining. Compared with the baseline, a significant spontaneous recovery could be observed in the CatWalk XT■parameters max intensity, mean intensity, max intensity at%, and max contact mean intensity from 4 weeks after injury onwards. Of note, corrected values(H/F) of CatWalk XT■parameters showed a significantly less vulnerability to the weight changes than absolute values, specifically in static parameters. The corrected CatWalk XT■parameters were positively correlated with the Basso, Beattie, and Bresnahan rating scale scores, cyst formation, the immunointensity of astrogliosis and chondroitin sulfate glycosaminoglycan deposition. The CatWalk XT■gait analysis and especially its static parameters, therefore, seem to be highly useful in assessing spontaneous recovery of hindlimb function after severe thoracic spinal cord injury. Because many CatWalk XT■parameters of the hindlimbs seem to be affected by body weight changes, using their corrected values might be a valuable option to improve this dependency. 展开更多
关键词 Basso Beattie and Bresnahan rating scale behavioral assessment CatWalk XT■gait analysis contusive and compressive injury hindlimb motor function histological changes spinal cord injury spontaneous recovery THORACIC weight
下载PDF
Molecular and cellular changes in the post-traumatic spinal cord remodeling after autoinfusion of a genetically-enriched leucoconcentrate in a mini-pig model 被引量:1
3
作者 Maria Aleksandrovna Davleeva Ravil Rasimovich Garifulin +9 位作者 Farid Vagizovich Bashirov Andrei Aleksandrovich Izmailov Leniz Faritovich Nurullin Ilnur Ildusovich Salafutdinov Dilara Zilbarovna Gatina Dmitrij Nikolaevich Shcherbinin Andrei Aleksandrovich Lysenko Irina Leonidovna Tutykhina Maksim Mikhailovich Shmarov Rustem Robertovich Islamov 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第7期1505-1511,共7页
Post-traumatic spinal cord remodeling includes both degenerating and regenerating processes,which affect the potency of the functional recovery after spinal cord injury(SCI).Gene therapy for spinal cord injury is prop... Post-traumatic spinal cord remodeling includes both degenerating and regenerating processes,which affect the potency of the functional recovery after spinal cord injury(SCI).Gene therapy for spinal cord injury is proposed as a promising therapeutic strategy to induce positive changes in remodeling of the affected neural tissue.In our previous studies for delivering the therapeutic genes at the site of spinal cord injury,we developed a new approach using an autologous leucoconcentrate transduced ex vivo with chimeric adenoviruses(Ad5/35)carrying recombinant cDNA.In the present study,the efficacy of the intravenous infusion of an autologous genetically-enriched leucoconcentrate simultaneously producing recombinant vascular endothelial growth factor(VEGF),glial cell line-derived neurotrophic factor(GDNF),and neural cell adhesion molecule(NCAM)was evaluated with regard to the molecular and cellular changes in remodeling of the spinal cord tissue at the site of damage in a model of mini-pigs with moderate spinal cord injury.Experimental animals were randomly divided into two groups of 4 pigs each:the therapeutic(infused with the leucoconcentrate simultaneously transduced with a combination of the three chimeric adenoviral vectors Ad5/35‐VEGF165,Ad5/35‐GDNF,and Ad5/35‐NCAM1)and control groups(infused with intact leucoconcentrate).The morphometric and immunofluorescence analysis of the spinal cord regeneration in the rostral and caudal segments according to the epicenter of the injury in the treated animals compared to the control mini-pigs showed:(1)higher sparing of the grey matter and increased survivability of the spinal cord cells(lower number of Caspase-3-positive cells and decreased expression of Hsp27);(2)recovery of synaptophysin expression;(3)prevention of astrogliosis(lower area of glial fibrillary acidic protein-positive astrocytes and ionized calcium binding adaptor molecule 1-positive microglial cells);(4)higher growth rates of regeneratingβIII-tubulin-positive axons accompanied by a higher number of oligodendrocyte transcription factor 2-positive oligodendroglial cells in the lateral corticospinal tract region.These results revealed the efficacy of intravenous infusion of the autologous genetically-enriched leucoconcentrate producing recombinant VEGF,GDNF,and NCAM in the acute phase of spinal cord injury on the positive changes in the post-traumatic remodeling nervous tissue at the site of direct injury.Our data provide a solid platform for a new ex vivo gene therapy for spinal cord injury and will facilitate further translation of regenerative therapies in clinical neurology. 展开更多
关键词 autologous genetically-enriched leucoconcentrate chimeric adenoviral vector gene therapy glial cell line-derived neurotrophic factor MINI-PIG neural cell adhesion molecule spinal cord contusion injury vascular endothelial growth factor
下载PDF
Identification of injury type using somatosensory and motor evoked potentials in a rat spinal cord injury model
4
作者 Rong Li Han-Lei Li +2 位作者 Hong-Yan Cui Yong-Can Huang Yong Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第2期422-427,共6页
The spinal cord is at risk of injury during spinal surgery.If intraoperative spinal co rd injury is identified early,irreve rsible impairment or loss of neurological function can be prevented.Different types of spinal... The spinal cord is at risk of injury during spinal surgery.If intraoperative spinal co rd injury is identified early,irreve rsible impairment or loss of neurological function can be prevented.Different types of spinal cord injury result in damage to diffe rent spinal cord regions,which may cause diffe rent somatosensory and motor evoked potential signal res ponses.In this study,we examined electrophysiological and histopathological changes between contusion,distra ction,and dislocation spinal cord injuries in a rat model.We found that contusion led to the most severe dorsal white matter injury and caused considerable attenuation of both somatosensory and motor evoked potentials.Dislocation resulted in loss of myelinated axons in the lateral region of the injured spinal cord along the rostrocaudal axis.The amplitude of attenuation in motor evoked potential responses caused by dislocation was greater than that caused by contusion.After distraction injury,extracellular spaces were slightly but not significantly enlarged;somatosensory evoked potential res ponses slightly decreased and motor evoked potential responses were lost.Correlation analysis showed that histological and electrophysiological findings we re significantly correlated and related to injury type.Intraope rative monitoring of both somatosensory and motor evoked potentials has the potential to identify iatrogenic spinal cord injury type during surgery. 展开更多
关键词 contusion injury dislocation injury distraction injury electropnysiology heterogeneity HISTOPATHOLOGY injury mechanism motor evoked potential somatosensory evoked potential spinal cord injury
下载PDF
Risk factors for corticosteroid insufficiency during the sub-acute phase of acute traumatic brain injury 被引量:4
5
作者 Xin Chen Yan Chai +4 位作者 Shao-Bo Wang Jia-Chong Wang Shu-Yuan Yue Rong-Cai Jiang Jian-Ning Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第7期1259-1265,共7页
Hypothalamic-pituitary-adrenal axis dysfunction may lead to the occurrence of critical illness-related corticosteroid insufficiency.Critical illness-related corticosteroid insufficiency can easily occur after traumati... Hypothalamic-pituitary-adrenal axis dysfunction may lead to the occurrence of critical illness-related corticosteroid insufficiency.Critical illness-related corticosteroid insufficiency can easily occur after traumatic brain injury,but few studies have examined this occurrence.A multicenter,prospective,cohort study was performed to evaluate the function of the hypothalamic-pituitary-adrenal axis and the incidence of critical illness-related corticosteroid insufficiency during the sub-acute phase of traumatic brain injury.One hundred and forty patients with acute traumatic brain injury were enrolled from the neurosurgical departments of three tertiary-level hospitals in China,and the critical illness-related corticosteroid insufficiency incidence,critical-illness-related corticosteroid insufficiency-related risk factors,complications,and 28-day mortality among these patients was recorded.Critical illness-related corticosteroid insufficiency was diagnosed in patients with plasma total cortisol levels less than 10μg/dL(275.9 nM)on post-injury day 4 or when serum cortisol was insufficiently suppressed(less than 50%)during a dexamethasone suppression test on post-injury day 5.The results demonstrated that critical illness-related corticosteroid insufficiency occurred during the sub-acute phase of traumatic brain injury in 5.6%of patients with mild injury,22.5%of patients with moderate injury,and 52.2%of patients with severe injury.Traumatic brain injury-induced critical illness-related corticosteroid insufficiency was strongly correlated to injury severity during the sub-acute stage of traumatic brain injury.Traumatic brain injury patients with critical illness-related corticosteroid insufficiency frequently presented with hemorrhagic cerebral contusions,diffuse axonal injury,brain herniation,and hypotension.Differences in the incidence of hospital-acquired pneumonia,gastrointestinal bleeding,and 28-day mortality were observed between patients with and without critical illness-related corticosteroid insufficiency during the sub-acute phase of traumatic brain injury.Hypotension,brain-injury severity,and the types of traumatic brain injury were independent risk factors for traumatic brain injury-induced critical illness-related corticosteroid insufficiency.These findings indicate that critical illness-related corticosteroid insufficiency is common during the sub-acute phase of traumatic brain injury and is strongly associated with poor prognosis.The dexamethasone suppression test is a practical assay for the evaluation of hypothalamic-pituitary-adrenal axis function and for the diagnosis of critical illness-related corticosteroid insufficiency in patients with traumatic brain injury,especially those with hypotension,hemorrhagic cerebral contusions,diffuse axonal injury,and brain herniation.Sub-acute infection of acute traumatic brain injury may be an important factor associated with the occurrence and development of critical illness-related corticosteroid insufficiency.This study protocol was approved by the Ethics Committee of General Hospital of Tianjin Medical University,China in December 2011(approval No.201189). 展开更多
关键词 brain herniation CORTICOSTEROID critical illness-related corticosteroid dexamethasone suppression test diffuse axonal injury gastrointestinal bleeding hemorrhagic cerebral contusions hospital-acquired pneumonia INSUFFICIENCY PROGNOSIS traumatic brain injury
下载PDF
Efficacy of nerve growth factor on the treatment of optic nerve contusion Evaluation with visual evoked potential 被引量:2
6
作者 Aihong Miao Xiaoling Liu Shujuan Lue 《Neural Regeneration Research》 SCIE CAS CSCD 2007年第9期565-568,共4页
BACKGROUND: Pattern- visual evoked potential (PVEP) can reflect the functional status of retinal ganglial cells (RGC) and visual cortex, and is an objective examination for visual pathway function. It is a unique... BACKGROUND: Pattern- visual evoked potential (PVEP) can reflect the functional status of retinal ganglial cells (RGC) and visual cortex, and is an objective examination for visual pathway function. It is a unique method for objectively examining the optic nerve function of optic ganglion cells. OBJECTIVE: To observe the effects of nerve growth factor (NGF) on PVEF in the treatment of optic nerve contusion, evaluate the clinical efficacy of NGF, and make an efficacy comparison with vitamin B12. DESIGN: A randomly grouping, controlled observation. SETTING: Department of Ophthalmology, Tangshan Gongren Hospital Affiliated to Hebei Medical University. PARTICIPANTS: Forty patients with optic nerve contusion caused by eye trauma, who received the treatment in the Tangshan Worker Hospital Affiliated to Hebei Medical University between January 2006 and June 2007, were recruited in this study. The involved 40 patients, including 34 males and 6 females, were aged 14-59 years. They were confirmed to have optic nerve contusion by ophthalmologic consultation combined with history of disease and orbital CT examination. Informed consents of treatments and detected items were obtained from all the patients. The patients were randomly divided into 2 groups with 20 in each: NGF group and vitamin B12 group. METHODS: Conservative treatment was used in the two groups. In addition, patients in the NGF group were intramuscularly injected with NGF solution 18 μg /time, once a day. Those in the vitamin B12 group were injected by the same method with common vitamin B12 of 500 μg combined with vitamin B1 of 100 mg, once a day. MAIN OUTCOME MEASURES: PVEP examination was conducted in all the patients before, one and two weeks after treatment, and latency and amplitude at P100 were detected. RESULTS: Forty patients with optic nerve contusion participated in the final analysis. Before treatment, significant differences in the latency and amplitude at P100 were not found in patients between two groups (P 〉 0.05). For each patient in the NGF group, the latency of PVEP at P100 was significantly shortened, and the amplitude was significantly increased one and two weeks after treatment as compared with vitamin B12 group(t =2.06-2.34, P 〈 0.05). CONCLUSION: NGF treatment can obviously improve the visual function of patients with optic nerve contusion. The curative effect of NGF is superior to vitamin B12. 展开更多
关键词 nerve growth factors optic nerve/injuries contusions evoked potentials visual
下载PDF
Graphene and graphene-based materials in axonal repair of spinal cord injury 被引量:1
7
作者 Shi-Xin Wang Yu-Bao Lu +4 位作者 Xue-Xi Wang Yan Wang Yu-Jun Song Xiao Wang Munkhtuya Nyamgerelt 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第10期2117-2125,共9页
Graphene and graphene-based materials have the ability to induce stem cells to differentiate into neurons,which is necessary to overcome the current problems faced in the clinical treatment of spinal cord injury.This ... Graphene and graphene-based materials have the ability to induce stem cells to differentiate into neurons,which is necessary to overcome the current problems faced in the clinical treatment of spinal cord injury.This review summarizes the advantages of graphene and graphene-based materials(in particular,composite materials)in axonal repair after spinal cord injury.These materials have good histocompatibility,and mechanical and adsorption properties that can be targeted to improve the environment of axonal regeneration.They also have good conductivity,which allows them to make full use of electrical nerve signal stimulation in spinal cord tissue to promote axonal regeneration.Furthermore,they can be used as carriers of seed cells,trophic factors,and drugs in nerve tissue engineering scaffolds to provide a basis for constructing a local microenvironment after spinal cord injury.However,to achieve clinical adoption of graphene and graphene-based materials for the repair of spinal cord injury,further research is needed to reduce their toxicity. 展开更多
关键词 axonal regeneration GRAPHENE graphene oxide nerve axon regeneration reduced graphene oxide spinal cord contusions spinal cord injury spinal cord trauma
下载PDF
Nogo-A expression dynamically varies after spinal cord injury 被引量:13
8
作者 Jian-wei Wang Jun-feng Yang +4 位作者 Yong Ma Zhen Hua Yang Guo Xiao-lin Gu Ya-feng Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第2期225-229,共5页
The mechanism involved in neural regeneration after spinal cord injury is unclear. The my-elin-derived protein Nogo-A, which is speciifc to the central nervous system, has been identiifed to negatively affect the cyto... The mechanism involved in neural regeneration after spinal cord injury is unclear. The my-elin-derived protein Nogo-A, which is speciifc to the central nervous system, has been identiifed to negatively affect the cytoskeleton and growth program of axotomized neurons. Studies have shown that Nogo-A exerts immediate and chronic inhibitory effects on neurite outgrowth.In vivo, inhibitors of Nogo-A have been shown to lead to a marked enhancement of regenerative axon extension. We established a spinal cord injury model in rats using a free-falling weight drop device to subsequently investigate Nogo-A expression. Nogo-A mRNA and protein expression and immunoreactivity were detected in spinal cord tissue using real-time quantitative PCR, immu-nohistochemistry and western blot analysis. At 24 hours after spinal cord injury, Nogo-A protein and mRNA expression was low in the injured group compared with control and sham-operated groups. The levels then continued to drop further and were at their lowest at 3 days, rapidly rose to a peak after 7 days, and then gradually declined again after 14 days. These changes were observed at both the mRNA and protein level. The transient decrease observed early after injury followed by high levels for a few days indicates Nogo-A expression is time dependent. This may contribute to the lack of regeneration in the central nervous system after spinal cord injury. The dynamic varia-tion of Nogo-A should be taken into account in the treatment of spinal cord injury. 展开更多
关键词 nerve regeneration spinal cord injury CONTUSION NOGO-A axon growth IMMUNOHISTO-CHEMISTRY fluorescent quantitative PCR neural regeneration
下载PDF
Neural progenitor cells but not astrocytes respond distally to thoracic spinal cord injury in rat models 被引量:9
9
作者 Tara Nguyen Yilin Mao +1 位作者 Theresa Sutherland Catherine Anne Gorrie 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第11期1885-1894,共10页
Traumatic spinal cord injury (SCI) is a detrimental condition that causes loss of sensory and motor function in an individual. Many complex secondary injury cascades occur after SCI and they offer great potential fo... Traumatic spinal cord injury (SCI) is a detrimental condition that causes loss of sensory and motor function in an individual. Many complex secondary injury cascades occur after SCI and they offer great potential for therapeutic targeting. In this study, we investigated the response of endogenous neural progenitor cells, astrocytes, and microglia to a localized thoracic SCI throughout the neuroaxis. Twenty-five adult female Sprague-Dawley rats underwent mild-contusion thoracic SCI (n = 9), sham surgery (n = 8), or no surgery (n = 8). Spinal cord and brain tissues were fixed and cut at six regions of the neuroaxis. Immunohistochem- istry showed increased reactivity of neural progenitor cell marker nestin in the central canal at all levels of the spinal cord. Increased reactivity of astrocyte-specific marker glial fibrillary acidic protein was found only at the lesion epicenter. The number of activated microglia was significantly increased at the lesion site, and activated microglia extended to the lumbar enlargement. Phagocytic microglia and macrophages were significantly increased only at the lesion site. There were no changes in nestin, glial fibrillary acidic protein, microglia and macrophage response in the third ventricle of rats subjected to mild-contusion thoracic SCI compared to the sham surgery or no surgery. These findings indicate that neural progenitor cells, astrocytes and microglia respond differently to a localized SCI, presumably due to differences in inflammatory signaling. These different cellular responses may have implications in the way that neural progenitor cells can be manipulated for neuroregeneration after SCI. This needs to be further investigated. 展开更多
关键词 nerve regeneration CONTUSION spinal cord neuroinflammatory ependymal cell glial fibrillary acidic protein MICROGLIA NESTIN neuroaxis tanycyte third ventricle trauma neural regeneration
下载PDF
Therapeutic exploitation of the S-nitrosoglutathione/S-nitrosylation mechanism for the treatment of contusion spinal cord injury 被引量:3
10
作者 Mushfiquddin Khan Inderjit Singh 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第6期973-974,共2页
Contusion spinal cord injury(SCI)is a major medical and socio-economic problem globally.The incidence of SCI is highest among young adults due to motor vehicle accidents,military or sports injuries,and violence(Selvar... Contusion spinal cord injury(SCI)is a major medical and socio-economic problem globally.The incidence of SCI is highest among young adults due to motor vehicle accidents,military or sports injuries,and violence(Selvarajah et al.,2014).The elderly and children are also at risk due to falls and accidents.SCI causes neurodegeneration,with profound loss of locomotor and sensory functions(Siddiqui et al.,2015).Pain and depression are also prevalent in a majority of SCI patients.Expenses for severe SCI are high:initial hospitalization,rehabilitation,and most likely the continuing need for a caregiver and medical care.SCI survivors with less severe injuries usually face lower but still hefty medical bills.However,people≥50 years old with severe SCI may face medical expenses of over$1.8 million during their lifetimes.These injuries also affect spouses and family members,emotionally and financially,and most injuries jeopardize employment for those affected. 展开更多
关键词 CONTUSION SPINAL major medical sports injuries
下载PDF
Numerical study on dynamic mechanism of brain volume and shear deformation under blast loading 被引量:3
11
作者 Zhijie Li Zhibo Du +8 位作者 Xiaochuan You Zhanli Liu Jian Cheng Chengcheng Luo Dongyang Chu Shaowu Ning Yue Kang Ce Yang Zhuo Zhuang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第5期1104-1119,共16页
Blast-induced traumatic brain injury(b-TBI)is a kind of significant injury to soldiers in the current military conflicts.However,the mechanism of b-TBI has not been well understood,and even there are some contradictor... Blast-induced traumatic brain injury(b-TBI)is a kind of significant injury to soldiers in the current military conflicts.However,the mechanism of b-TBI has not been well understood,and even there are some contradictory conclusions.It is crucial to reveal the dynamic mechanism of brain volume and shear deformations under blast loading for better understanding of b-TBI.In this paper,the numerical simulation method is adopted to carry out comprehensive and in-depth researches on this issue for the first time.Based on the coupled Eulerian-Lagrangian method,the fluid-structure coupling model of the blast wave and human head is developed to simulate two situations,namely the head subjected to the frontal and lateral impacts.The simulation results are analyzed to obtain the underlying dynamic mechanisms of brain deformation.The brain volume deformation is dominated by the local bending vibration of the skull,and the corresponding frequency for the forehead skull under the frontal impact and the lateral skull faced to the lateral impact is as high as 8 kHz and 5 kHz,respectively.This leads to the high-frequency fluctuation of brain pressure and the large pressure gradient along the skull,totally different from the dynamic response of brain under head collisions.While the brain shear deformation mainly depends on the relative tangential displacement between the skull and brain and the anatomical structure of inner skull,being not related to the brain pressure and its gradient.By further comparing the medical statistics,it is inferred that diffuse axonal injury and brain contusion,the two most common types of b-TBI,are mainly attributed to brain shear deformations.And the von Mises stress can be adopted as the indicator for these two brain injuries.This study can provide theoretical guidance for the diagnosis of b-TBI and the development of protective equipment. 展开更多
关键词 Blast-induced traumatic BRAIN INJURY Numerical head MODEL Fluid-structure coupling MODEL Diffuse AXONAL INJURY BRAIN CONTUSION
下载PDF
Effects of neural stem cell transplantation on the motor function of rats with contusion spinal cord injuries:a meta-analysis 被引量:4
12
作者 Kai Qian Tuo-Ye Xu +7 位作者 Xi Wang Tao Ma Kai-Xin Zhang Kun Yang Teng-Da Qian Jing Shi Li-Xin Li Zheng Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第4期748-758,共11页
Objective:To judge the efficacies of neural stem cell(NSC)transplantation on functional recovery following contusion spinal cord injuries(SCIs).Data sources:Studies in which NSCs were transplanted into a clinically re... Objective:To judge the efficacies of neural stem cell(NSC)transplantation on functional recovery following contusion spinal cord injuries(SCIs).Data sources:Studies in which NSCs were transplanted into a clinically relevant,standardized rat model of contusion SCI were identified by searching the PubMed,Embase and Cochrane databases,and the extracted data were analyzed by Stata 14.0.Data selection:Inclusion criteria were that NSCs were used in in vivo animal studies to treat contusion SCIs and that behavioral assessment of locomotor functional recovery was performed using the Basso,Beattie,and Bresnahan lo-comotor rating scale.Exclusion criteria included a follow-up of less than 4 weeks and the lack of control groups.Outcome measures:The restoration of motor function was assessed by the Basso,Beattie,and Bresnahan locomotor rating scale.Results:We identified 1756 non-duplicated papers by searching the aforementioned electronic databases,and 30 full-text articles met the inclusion criteria.A total of 37 studies reported in the 30 articles were included in the meta-analysis.The meta-analysis results showed that transplanted NSCs could improve the motor function recovery of rats following contusion SCIs,to a moderate extent(pooled standardized mean difference(SMD)=0.73;95%confidence interval(CI):0.47–1.00;P<0.001).NSCs obtained from different donor species(rat:SMD=0.74;95%CI:0.36–1.13;human:SMD=0.78;95%CI:0.31–1.25),at different donor ages(fetal:SMD=0.67;95%CI:0.43–0.92;adult:SMD=0.86;95%CI:0.50–1.22)and from different origins(brain-derived:SMD=0.59;95%CI:0.27–0.91;spinal cord-derived:SMD=0.51;95%CI:0.22–0.79)had similar efficacies on improved functional recovery;however,adult induced pluripotent stem cell-derived NSCs showed no significant efficacies.Furthermore,the use of higher doses of transplanted NSCs or the administration of immunosuppressive agents did not promote better locomotor function recovery(SMD=0.45;95%CI:0.21–0.70).However,shorter periods between the contusion induction and the NSC transplantation showed slightly higher efficacies(acute:SMD=1.22;95%CI:0.81–1.63;subacute:SMD=0.75;95%CI:0.42–1.09).For chronic injuries,NSC implantation did not significantly improve functional recovery(SMD=0.25;95%CI:–0.16 to 0.65).Conclusion:NSC transplantation alone appears to be a positive yet limited method for the treatment of contusion SCIs. 展开更多
关键词 Basso Beattie and Bresnahan locomotor rating scale CELL TRANSPLANTATION META-ANALYSIS motor functional recovery NEURAL regeneration NEURAL stem CELL NEURAL stem CELL TRANSPLANTATION rat model SPINAL CONTUSION SPINAL cord injury
下载PDF
Initial assessment of chest X-ray in thoracic trauma patients: Awareness of specific injuries 被引量:3
13
作者 Tjeerd S Aukema Ludo FM Beenen +1 位作者 Falco Hietbrink Luke PH Leenen 《World Journal of Radiology》 CAS 2012年第2期48-52,共5页
AIM: To compare the reported injuries on initial assessment of the chest X-ray (CXR) in thoracic trauma patients to a second read performed by a dedicated trauma radiologist. METHODS: By retrospective analysis of a pr... AIM: To compare the reported injuries on initial assessment of the chest X-ray (CXR) in thoracic trauma patients to a second read performed by a dedicated trauma radiologist. METHODS: By retrospective analysis of a prospective database, 712 patients with an injury to the chest admitted to the University Medical Center Utrecht were studied. All patients with a CXR were included in the study. Every CXR was re-evaluated by a trauma radiologist, who was blinded for the initial results. The findings of the trauma radiologist regarding rib fractures, pneumothoraces, hemothoraces and lung contusions were compared with the initial reports from the trauma team, derived from the original patient files. RESULTS: A total of 516 patients with both thorax trauma and an initial CXR were included in the study. After re-evaluation of the initial CXR significantly more lung contusions (53.3% vs 34.1%, P < 0.001), hemothoraces (17.8% vs 11.0%, P < 0.001) and pneumothoraces (34.4% vs 26.4%, P < 0.001) were detected.During initial assessment significantly more rib fractures were reported (69.8% vs 62.3%, P < 0.001). CONCLUSION: During the initial assessment of a CXR from trauma patients in the emergency department, a significant number of treatment-dictating injuries are missed. More awareness for these specific injuries is needed. 展开更多
关键词 THORACIC RADIOGRAPHY Rib FRACTURES HEMOTHORAX PNEUMOTHORAX Pulmonary CONTUSION
下载PDF
Spinal Cord Contusion 被引量:2
14
作者 Gong Ju Jian Wang +1 位作者 Yazhou Wang Xianghui Zhao 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第8期789-794,共6页
Spinal cord injury is a major cause of disability with devastating neurological outcomes and lim-ited therapeutic opportunities, even though there are thousands of publications on spinal cord injury annually. There ar... Spinal cord injury is a major cause of disability with devastating neurological outcomes and lim-ited therapeutic opportunities, even though there are thousands of publications on spinal cord injury annually. There are two major types of spinal cord injury, transaction of the spinal cord and spinal cord contusion. Both can theoretically be treated, but there is no well documented treatment in human being. As for spinal cord contusion, we have developed an operation with fabulous result. 展开更多
关键词 spinal cord contusion ASTROCYTE OLIGODENDROCYTE MACROPHAGE NEUROSURGERY
下载PDF
Intraspinal transplantation of motoneuron-like cell combined with delivery of polymer-based glial cell line-derived neurotrophic factor for repair of spinal cord contusion injury 被引量:3
15
作者 Alireza Abdanipour Taki Tiraihi Taher Taheri 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第10期1003-1013,共11页
To evaluate the effects of glial cell line-derived neurotrophic factor transplantation combined with adipose-derived stem cells-transdifferentiated motoneuron delivery on spinal cord con-tusion injury, we developed ra... To evaluate the effects of glial cell line-derived neurotrophic factor transplantation combined with adipose-derived stem cells-transdifferentiated motoneuron delivery on spinal cord con-tusion injury, we developed rat models of spinal cord contusion injury, 7 days later, injected adipose-derived stem cells-transdifferentiated motoneurons into the epicenter, rostral and caudal regions of the impact site and simultaneously transplanted glial cell line-derived neuro-trophic factor-gelfoam complex into the myelin sheath. Motoneuron-like cell transplantation combined with glial cell line-derived neurotrophic factor delivery reduced cavity formations and increased cell density in the transplantation site. The combined therapy exhibited superior promoting effects on recovery of motor function to transplantation of glial cell line-derived neurotrophic factor, adipose-derived stem cells or motoneurons alone. These ifndings suggest that motoneuron-like cell transplantation combined with glial cell line-derived neurotrophic factor delivery holds a great promise for repair of spinal cord injury. 展开更多
关键词 nerve regeneration spinal cord injury adipose-derived stem cells glial cell line-derived neurotrophic factor MOTONEURONS cell transplantation neurotrophic factor spinal cord contusion injury neural regeneration
下载PDF
Methylprednisolone inhibits Nogo-A protein expression after acute spinal cord injury 被引量:2
16
作者 Zhaozong Fu Hai Lu +2 位作者 Jianming Jiang Hui Jiang Zhaofei Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第5期404-409,共6页
Oligodendrocyte-produced Nogo-A has been shown to inhibit axonal regeneration. Methylprednisolone plays an effective role in treating spinal cord injury, but the effect of methylprednisolone on Nogo-A in the injured s... Oligodendrocyte-produced Nogo-A has been shown to inhibit axonal regeneration. Methylprednisolone plays an effective role in treating spinal cord injury, but the effect of methylprednisolone on Nogo-A in the injured spinal cord remains unknown. The present study established a rat model of acute spinal cord injury by the weight-drop method. Results showed that after injury, the motor behavior ability of rats was reduced and necrotic injury appeared in spinal cord tissues, which was accompanied by increased Nogo-A expression in these tissues. After intravenous injection of high-dose methylprednisolone, although the pathology of spinal cord tissue remained unchanged, Nogo-A expression was reduced, but the level was still higher than normal. These findings implicate that methylprednisolone could inhibit Nogo-A expression, which could be a mechanism by which early high dose methylprednisolone infusion helps preserve spinal cord function after spinal cord injury. 展开更多
关键词 neural regeneration spinal cord injury METHYLPREDNISOLONE NOGO-A OLIGODENDROCYTE spJnal cord pathology myelonecrosis weight-drop contusion photographs-containing paper NEUROREGENERATION
下载PDF
Endoplasmic reticulum stress transducer old astrocyte specifically induced substance contributes to astrogliosis after spinal cord injury 被引量:4
17
作者 Atsushi Takazawa Naosuke Kamei +1 位作者 Nobuo Adachi Mitsuo Ochi 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第3期536-540,共5页
Old astrocyte specifically induced substance (OASIS) is an endoplasmic reticulum (ER) stress transducer specifically expressed in astrocytes and osteoblasts. OASIS regulates the differentiation of neural precursor... Old astrocyte specifically induced substance (OASIS) is an endoplasmic reticulum (ER) stress transducer specifically expressed in astrocytes and osteoblasts. OASIS regulates the differentiation of neural precursor cells into astrocytes in the central nervous system. This study aimed to elucidate the involvement of ER stress responses stimulated via OASIS in astrogliosis following spinal cord injury. In a mouse model of spinal cord contusion injury, OASIS mRNA and protein expression were evaluated at days 7 and 14. A significant increase in OASIS mRNA on day 7 and an increase in protein on days 7 and 14 was observed in injured spinal cords. Immunostaining on day 7 revealed co-localization of OASIS and astrocytes in the periphery of the injury site. Furthermore, anti-OASIS small interfering RNA (siRNA) was injected at the injury sites on day 5 to elucidate the function of OASIS. Treatment with anti-OASIS siRNA caused a significant decrease in OASIS mRNA on day 7 and protein on days 7 and 14, and was associated with the inhibition of astrogliosis and hindlimb motor function recovery. Results of our study show that OASIS expression synchronizes with astrogliosis and is functionally associated with astrogliosis after spinal cord injury. 展开更多
关键词 unfolded protein response cAMP-response element binding protein/activating transcription factor protein family C57BL/6 contusion injury reactive astrocyte functional recovery real-time polymerase chain reaction western blot immunohistochemistry glial fibrillary acidic protein
下载PDF
Aquaporin 4 expression and ultrastructure of the blood-brain barrier following cerebral contusion injury 被引量:2
18
作者 Xinjun Li Yangyun Han +5 位作者 Hong Xu Zhongshu Sun Zengjun Zhou Xiaodong Long Yumin Yang Linbo Zou 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第4期338-345,共8页
This study aimed to investigate aquaporin 4 expression and the ultrastructure of the blood-brain barrier at 2-72 hours following cerebral contusion injury, and correlate these changes to the formation of brain edema. ... This study aimed to investigate aquaporin 4 expression and the ultrastructure of the blood-brain barrier at 2-72 hours following cerebral contusion injury, and correlate these changes to the formation of brain edema. Results revealed that at 2 hours after cerebral contusion and laceration injury, aquaporin 4 expression significantly increased, brain water content and blood-brain barrier permeability increased, and the number of pinocytotic vesicles in cerebral microvascular endothelia cells increased. In addition, the mitochondrial accumulation was observed. As contusion and laceration injury became aggravated, aquaporin 4 expression continued to increase, brain water content and blood-brain barrier permeability gradually increased, brain capillary endothelial cells and astrocytes swelled, and capillary basement membrane injury gradually increased. The above changes were most apparent at 12 hours after injury, after which they gradually attenuated. Aquaporin 4 expression positively correlated with brain water content and the blood-brain barrier index. Our experimental findings indicate that increasing aquaporin 4 expression and blood-brain barrier permeability after cerebral contusion and laceration injury in humans is involved in the formation of brain edema. 展开更多
关键词 neural regeneration brain injury cerebral contusion and laceration injury aquaporin 4 blood-brain barrier ULTRASTRUCTURE brain edema human early stage photographs-containing paper NEUROREGENERATION
下载PDF
Massive pulmonary haemorrhage due to severe trauma treated with repeated alveolar lavage combined with extracorporeal membrane oxygenation:A case report 被引量:2
19
作者 Bei-Yuan Zhang Xian-Cheng Chen +2 位作者 Yong You Ming Chen Wen-Kui Yu 《World Journal of Clinical Cases》 SCIE 2020年第18期4245-4251,共7页
BACKGROUND Massive pulmonary haemorrhage can spoil the entire lung and block the airway in a short period of time due to severe bleeding,which quickly leads to death.Alveolar lavage is an effective method for haemosta... BACKGROUND Massive pulmonary haemorrhage can spoil the entire lung and block the airway in a short period of time due to severe bleeding,which quickly leads to death.Alveolar lavage is an effective method for haemostasis and airway maintenance.However,patients often cannot tolerate alveolar lavage due to severe hypoxia.We used extracorporeal membrane oxygenation(ECMO)to overcome this limitation in a patient with massive pulmonary haemorrhage due to severe trauma and succeeded in saving the life by repeated alveolar lavage.CASE SUMMARY A 22-year-old man sustained multiple injuries in a motor vehicle accident and was transferred to our emergency department.On admission,he had a slight cough and a small amount of bloody sputum;computed tomography revealed multiple fractures and mild pulmonary contusion.At 37 h after admission,he developed severe chest tightness,chest pain,dizziness and haemoptysis.His oxygen saturation was 68%.Emergency endotracheal intubation was performed,and a large amount of bloody sputum was suctioned.After transfer to the intensive care unit,he developed refractory hypoxemia and heparin-free venovenous ECMO was initiated.Fibreoptic bronchoscopy revealed diffuse and profuse blood in all bronchopulmonary segment.Bleeding was observed in the trachea and right bronchus,and repeated alveolar lavage was performed.On day 3,the patient’s haemoptysis ceased,and ECMO support was terminated 10 d later.Tracheostomy was performed on day 15,and the patient was weaned from the ventilator on day 21.CONCLUSION Alveolar lavage combined with ECMO can control bleeding in trauma-induced massive pulmonary haemorrhage,is safe and can be performed bedside. 展开更多
关键词 Pulmonary contusion Massive pulmonary haemorrhage Alveolar lavage Extracorporeal membrane oxygenation Case report
下载PDF
Noninvasive ventilation in trauma 被引量:3
20
作者 Marcin K Karcz Peter J Papadakos 《World Journal of Critical Care Medicine》 2015年第1期47-54,共8页
Trauma patients are a diverse population with heterogeneous needs for ventilatory support. This requirement depends mainly on the severity of their ventilatory dysfunction, degree of deterioration in gaseous exchange,... Trauma patients are a diverse population with heterogeneous needs for ventilatory support. This requirement depends mainly on the severity of their ventilatory dysfunction, degree of deterioration in gaseous exchange, any associated injuries, and the individual feasibility of potentially using a noninvasive ventilation approach. Noninvasive ventilation may reduce the need to intubate patients with traumarelated hypoxemia. It is well-known that these patientsare at increased risk to develop hypoxemic respiratory failure which may or may not be associated with hypercapnia. Hypoxemia in these patients is due to ventilation perfusion mismatching and right to left shunt because of lung contusion, atelectasis, an inability to clear secretions as well as pneumothorax and/or hemothorax, all of which are common in trauma patients. Noninvasive ventilation has been tried in these patients in order to avoid the complications related to endotracheal intubation, mainly ventilator-associated pneumonia. The potential usefulness of noninvasive ventilation in the ventilatory management of trauma patients, though reported in various studies, has not been sufficiently investigated on a large scale. According to the British Thoracic Society guidelines, the indications and efficacy of noninvasive ventilation treatment in respiratory distress induced by trauma have thus far been inconsistent and merely received a low grade recommendation. In this review paper, we analyse and compare the results of various studies in which noninvasive ventilation was applied and discuss the role and efficacy of this ventilator modality in trauma. 展开更多
关键词 Acute RESPIRATORY DISTRESS syndrome NONINVASIVE ventilation PULMONARY CONTUSION RESPIRATORY failure TRAUMA
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部