For convolution-type Calderon-Zygmund operators, by the boundedness on Besov spaces and Hardy spaces, applying interpolation theory and duality, it is known that H5rmander condition can ensure the boundedness on Trieb...For convolution-type Calderon-Zygmund operators, by the boundedness on Besov spaces and Hardy spaces, applying interpolation theory and duality, it is known that H5rmander condition can ensure the boundedness on Triebel-Lizorkin spaces Fp^0,q (1 〈 p,q 〈 ∞) and on a party of endpoint spaces FO,q (1 ≤ q ≤ 2), hut this idea is invalid for endpoint Triebel-Lizorkin spaces F1^0,q (2 〈 q ≤ ∞). In this article, the authors apply wavelets and interpolation theory to establish the boundedness on F1^0,q (2 〈 q ≤ ∞) under an integrable condition which approaches HSrmander condition infinitely.展开更多
An independent method for paper [10] is presented. Weighted lattice paths are enumerated by counting function which is a natural extension of Gaussian multinomial coefficient in the case of unrestricted paths. Convolu...An independent method for paper [10] is presented. Weighted lattice paths are enumerated by counting function which is a natural extension of Gaussian multinomial coefficient in the case of unrestricted paths. Convolutions for path counts are investigated, which yields some Vandcrmondc-type identities for multinomial and q-multinomial coefficients.展开更多
This paper focuses on the study of the boundedness of convolution-type Calderón-Zygmund operators on some endpoint Triebel-Lizorkin spaces. Applying wavelets, molecular decomposition and interpolation theory, the...This paper focuses on the study of the boundedness of convolution-type Calderón-Zygmund operators on some endpoint Triebel-Lizorkin spaces. Applying wavelets, molecular decomposition and interpolation theory, the author establishes the boundedness on certain endpoint Triebel-Lizorkin spaces F˙10 ,q(2 q ≤ ∞) under a very weak pointwise regularity condition.展开更多
From the constitutive model with generalized force fields for a viscoelastic body with damage, the differential equations of motion for thin and thick plates with damage are derived under arbitrary boundary conditions...From the constitutive model with generalized force fields for a viscoelastic body with damage, the differential equations of motion for thin and thick plates with damage are derived under arbitrary boundary conditions. The convolution-type functionals for the bending of viscoelastic thin and thick plates with damage are presented, and the corresponding generalized variational principles are given. From these generalized principles, all the basic equations of the displacement and damage variables and initial and boundary conditions can be deduced. As an example, we compare the difference between the dynamical properties of plates with and without damage and consider the effect of damage on the dynamical properties of plates.展开更多
基金Sponsored by the NSF of South-Central University for Nationalities (YZZ08004)the Doctoral programme foundation of National Education Ministry of China
文摘For convolution-type Calderon-Zygmund operators, by the boundedness on Besov spaces and Hardy spaces, applying interpolation theory and duality, it is known that H5rmander condition can ensure the boundedness on Triebel-Lizorkin spaces Fp^0,q (1 〈 p,q 〈 ∞) and on a party of endpoint spaces FO,q (1 ≤ q ≤ 2), hut this idea is invalid for endpoint Triebel-Lizorkin spaces F1^0,q (2 〈 q ≤ ∞). In this article, the authors apply wavelets and interpolation theory to establish the boundedness on F1^0,q (2 〈 q ≤ ∞) under an integrable condition which approaches HSrmander condition infinitely.
文摘An independent method for paper [10] is presented. Weighted lattice paths are enumerated by counting function which is a natural extension of Gaussian multinomial coefficient in the case of unrestricted paths. Convolutions for path counts are investigated, which yields some Vandcrmondc-type identities for multinomial and q-multinomial coefficients.
基金Supported by the National Natural Science Foundation of China (Grant No. 10871209)Research Fund for the Doctoral Program of Higher Education (Grant No. 20090141120010)
文摘This paper focuses on the study of the boundedness of convolution-type Calderón-Zygmund operators on some endpoint Triebel-Lizorkin spaces. Applying wavelets, molecular decomposition and interpolation theory, the author establishes the boundedness on certain endpoint Triebel-Lizorkin spaces F˙10 ,q(2 q ≤ ∞) under a very weak pointwise regularity condition.
基金Project supported by the National Natural Sciences Foundation of China (No. 10272069) the Shanghai Key Subject Program.
文摘From the constitutive model with generalized force fields for a viscoelastic body with damage, the differential equations of motion for thin and thick plates with damage are derived under arbitrary boundary conditions. The convolution-type functionals for the bending of viscoelastic thin and thick plates with damage are presented, and the corresponding generalized variational principles are given. From these generalized principles, all the basic equations of the displacement and damage variables and initial and boundary conditions can be deduced. As an example, we compare the difference between the dynamical properties of plates with and without damage and consider the effect of damage on the dynamical properties of plates.